149 research outputs found

    Effects of Solution Chemistry on Fibrin Nanomechanics

    Get PDF

    Nitric oxide release: Part I. Macromolecular scaffolds

    Get PDF
    The roles of nitric oxide (NO) in physiology and pathophysiology merit the use of NO as a therapeutic for certain biomedical applications. Unfortunately, limited NO payloads, too rapid NO release, and the lack of targeted NO delivery have hindered the clinical utility of NO gas and low molecular weight NO donor compounds. A wide-variety of NO-releasing macromolecular scaffolds has thus been developed to improve NO’s pharmacological potential. In this tutorial review, we provide an overview of the most promising NO release scaffolds including protein, organic, inorganic, and hybrid organic-inorganic systems. The NO release vehicles selected for discussion were chosen based on their enhanced NO storage, tunable NO release characteristics, and potential as therapeutics

    Morphological analysis of the antimicrobial action of nitric oxide on Gram-negative pathogens using atomic force microscopy

    Get PDF
    Atomic force microscopy (AFM) was used to study the morphological changes of two Gram-negative pathogens, Pseudomonas aeruginosa and Escherichia coli, after exposure to nitric oxide (NO). The time-dependent effects of NO released from a xerogel coating and the concentration-dependent effects rendered by a small-molecule that releases NO in a bolus were examined and compared. Bacteria exhibited irregular and degraded exteriors. With NO-releasing surfaces, an increase in surface debris and disorganized adhesion patterns were observed compared to controls. Analysis of cell surface topography revealed that increasing membrane roughness correlated with higher doses of NO. At a lower total dose, NO delivered via a bolus resulted in greater membrane roughness than NO released from a surface via a sustained flux. At sub-inhibitory levels, treatment with amoxicillin, an antibiotic known to compromise the integrity of the cell wall, led to morphologies resembling those resulting from NO treatment. Our observations indicate that cell envelope deterioration is a visible consequence of NO-exposure for both Gram-negative species studied

    Nitric Oxide-Releasing Xerogels Synthesized from N -Diazeniumdiolate-Modified Silane Precursors

    Get PDF
    Nitric oxide (NO)-releasing xerogel materials were synthesized using N-diazeniumdiolate-modified silane monomers that were subsequently co-condensed with an alkoxysilane. The NO-release characteristics were tuned by varying the aminosilane structure and concentration. The resulting materials exhibited maximum NO release totals and durations ranging from 0.45–3.2 µmol cm−2 and 20–90 h, respectively. The stability of the xerogel networks was optimized by varying the alkoxysilane backbone identity, water to silane ratio, base catalyst concentration, reaction time, and drying conditions. The response of glucose biosensors prepared using the NO-releasing xerogel (15 mol% N-diazeniumdiolate-modified N-2-(aminoethyl)-aminopropyltrimethoxysilane) as an outer sensor membrane was linear (R2 = .979) up to 24 mM glucose. The sensitivity (3.4 nA mM−1) of the device to glucose was maintained for 7 d in phosphate buffered saline. The facile sol-gel synthetic route, along with the NO release and glucose biosensor characteristics, demonstrates the versatility of this method for biosensor membrane applications

    Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    Get PDF
    ABSTRACT Chitosan oligosaccharides were modified with N -diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments

    Inorganic/Organic Hybrid Silica Nanoparticles as a Nitric Oxide Delivery Scaffold

    Get PDF
    The preparation and characterization of nitric oxide (NO)-releasing silica particles formed following the synthesis of N-diazeniumdiolate-modified aminoalkoxysilanes are reported. Briefly, an aminoalkoxysilane solution was prepared by dissolving an appropriate amount of aminoalkoxysilane in a mixture of ethanol, methanol, and sodium methoxide (NaOMe) base. The silane solution was reacted with NO (5 atm) to form N-diazeniumdiolate NO donor moieties on the amino-alkoxysilanes. Tetraethoxy- or tetramethoxysilane (TEOS or TMOS) was then mixed with different ratios of N-diazeniumdiolate-modified aminoalkoxysilane (10 – 75 mol%, balance TEOS or TMOS). Finally, the silane mixture was added into ethanol in the presence of an ammonia catalyst to form NO donor silica nanoparticles via a sol–gel process. This synthetic approach allows for the preparation of NO delivery silica scaffolds with remarkably improved NO storage and release properties, surpassing all macromolecular NO donor systems reported to date with respect to NO payload (11.26μmol·mg−1), maximum NO release amount (357000 ppb·mg−1), NO release half-life (253 min), and NO release duration (101 h). The N-diazeniumdiolate-modified silane monomers and the resulting silica nanoparticles were characterized by 29Si nuclear magnetic resonance (NMR) spectroscopy, UV-visible spectroscopy, chemiluminescence, atomic force microscopy (AFM), gas adsorption-desorption isotherms, and elemental analysis

    Competitive Formation of N -Diazeniumdiolates and N -Nitrosamines via Anaerobic Reactions of Polyamines with Nitric Oxide

    Get PDF
    Reactions of amines with nitric oxide (NO) at high pressures form diverse NO donor species, highly dependent on the precursor structure. While monoamine precursors favor the formation of N-diazeniumdiolates in high yield, polyamines exhibit competitive formation of N-nitrosamines and diazeniumdiolates, resulting in mixed products containing significant percentages of undesired N-nitroso compounds

    Synthesis of nitric oxide-releasing polyurethanes with S-nitrosothiol-containing hard and soft segments

    Get PDF
    Nitric oxide (NO)-releasing polyurethanes capable of releasing up to 0.20 μmol NO cm−2 were synthesized by incorporating active S-nitrosothiol functionalities into hard and soft segment domains using thiol group protection and post-polymerization modifications, respectively. The nitrosothiol position within the hard and soft segment domains of the polyurethanes impacted both the total NO release and NO release kinetics. The NO storage and release properties were correlated to both chain extender modification and ensuing phase miscibility of the polyurethanes. Thorough material characterization is provided to examine the effects of hard and soft segment modifications on the resultant polyurethane properties

    Nitric oxide flux-dependent bacterial adhesion and viability at fibrinogen-coated surfaces

    Get PDF
    Nitric oxide (NO) is an endogenous antibacterial agent produced by immune cells in response to pathogens. Herein, the NO fluxes necessary to reduce bacterial adhesion of different bacteria (S. aureus, methicillin-resistant S. aureus, S. epidermidis, E. faecalis, E. coli, and P. aeruginosa) were investigated to ascertain the sensitivity of these bacteria to NO. S-nitrosothiol NO donor-modified xerogels were selected as a model NO-release surface due to their extended NO-release kinetics relative to other NO donor systems. The xerogels were coated with poly(vinyl chloride) (PVC) to achieve consistent surface energy between NO-releasing and control substrates. Fibrinogen was pre-adsorbed to these materials to more accurately mimic conditions encountered in blood and promote bacteria adhesion. Nitric oxide fluxes ranging from 20–50 pmol cm−2 s−1 universally inhibited the bacterial adhesion by >80% for each strain studied. Maximum bacteria killing activity (reduced viability by 85–98%) was observed at the greatest NO payload (1700 nmol cm−2)
    • …
    corecore