3 research outputs found

    A data-driven approach for assessing ice-sheet mass balance in space and time

    Get PDF
    Combinations of various numerical models and datasets with diverse observation characteristics have been used to assess the mass evolution of ice sheets. As a consequence, a wide range of estimates have been produced using markedly different methodologies, data, approximation methods and model assumptions. Current attempts to reconcile these estimates using simple combination methods are unsatisfactory, as common sources of errors across different methodologies may not be accurately quantified (e.g. systematic biases in models). Here we provide a general approach which deals with this issue by considering all data sources simultaneously, and, crucially, by reducing the dependence on numerical models. The methodology is based on exploiting the different space-time characteristics of the relevant ice-sheet processes, and using statistical smoothing methods to establish the causes of the observed change. In omitting direct dependence on numerical models, the methodology provides a novel means for assessing glacio-isostatic adjustment and climate models alike, using remote-sensing datasets. This is particularly advantageous in Antarctica, where in situ measurements are difficult to obtain. We illustrate the methodology by using it to infer Antarctica\u27s mass trend from 2003 to 2009 and produce surface mass-balance anomaly estimates to validate the RACMO2.1 regional climate model

    Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework

    No full text
    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd

    Analysis of Outcomes in Ischemic vs Nonischemic Cardiomyopathy in Patients With Atrial Fibrillation A Report From the GARFIELD-AF Registry

    No full text
    IMPORTANCE Congestive heart failure (CHF) is commonly associated with nonvalvular atrial fibrillation (AF), and their combination may affect treatment strategies and outcomes
    corecore