315 research outputs found
Introduction to Quantum Noise, Measurement and Amplification
The topic of quantum noise has become extremely timely due to the rise of
quantum information physics and the resulting interchange of ideas between the
condensed matter and AMO/quantum optics communities. This review gives a
pedagogical introduction to the physics of quantum noise and its connections to
quantum measurement and quantum amplification. After introducing quantum noise
spectra and methods for their detection, we describe the basics of weak
continuous measurements. Particular attention is given to treating the standard
quantum limit on linear amplifiers and position detectors using a general
linear-response framework. We show how this approach relates to the standard
Haus-Caves quantum limit for a bosonic amplifier known in quantum optics, and
illustrate its application for the case of electrical circuits, including
mesoscopic detectors and resonant cavity detectors.Comment: Substantial improvements over initial version; include supplemental
appendices
Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics
We propose to couple an on-chip high finesse superconducting cavity to the
lateral-motion and spin state of a single electron trapped on the surface of
superfluid helium. We estimate the motional coherence times to exceed 15
microseconds, while energy will be coherently exchanged with the cavity photons
in less than 10 nanoseconds for charge states and faster than 1 microsecond for
spin states, making the system attractive for quantum information processing
and cavity quantum electrodynamics experiments. Strong interaction with cavity
photons will provide the means for both nondestructive readout and coupling of
distant electrons.Comment: 4 pages, 3 figures, supplemental material
The reconfigurable Josephson circulator/directional amplifier
Circulators and directional amplifiers are crucial non-reciprocal signal
routing and processing components involved in microwave readout chains for a
variety of applications. They are particularly important in the field of
superconducting quantum information, where the devices also need to have
minimal photon losses to preserve the quantum coherence of signals.
Conventional commercial implementations of each device suffer from losses and
are built from very different physical principles, which has led to separate
strategies for the construction of their quantum-limited versions. However, as
recently proposed theoretically, by establishing simultaneous pairwise
conversion and/or gain processes between three modes of a Josephson-junction
based superconducting microwave circuit, it is possible to endow the circuit
with the functions of either a phase-preserving directional amplifier or a
circulator. Here, we experimentally demonstrate these two modes of operation of
the same circuit. Furthermore, in the directional amplifier mode, we show that
the noise performance is comparable to standard non-directional superconducting
amplifiers, while in the circulator mode, we show that the sense of circulation
is fully reversible. Our device is far simpler in both modes of operation than
previous proposals and implementations, requiring only three microwave pumps.
It offers the advantage of flexibility, as it can dynamically switch between
modes of operation as its pump conditions are changed. Moreover, by
demonstrating that a single three-wave process yields non-reciprocal devices
with reconfigurable functions, our work breaks the ground for the development
of future, more-complex directional circuits, and has excellent prospects for
on-chip integration
Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout
In a Rabi oscillation experiment with a superconducting qubit we show that a
visibility in the qubit excited state population of more than 90 % can be
attained. We perform a dispersive measurement of the qubit state by coupling
the qubit non-resonantly to a transmission line resonator and probing the
resonator transmission spectrum. The measurement process is well characterized
and quantitatively understood. The qubit coherence time is determined to be
larger than 500 ns in a measurement of Ramsey fringes.Comment: 4 pages, 5 figures, version with high resolution figures available at
http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm
Sideband Transitions and Two-Tone Spectroscopy of a Superconducting Qubit Strongly Coupled to an On-Chip Cavity
Sideband transitions are spectroscopically probed in a system consisting of a
Cooper pair box strongly but non-resonantly coupled to a superconducting
transmission line resonator. When the Cooper pair box is operated at the
optimal charge bias point the symmetry of the hamiltonian requires a two photon
process to access sidebands. The observed large dispersive ac-Stark shifts in
the sideband transitions induced by the strong non-resonant drives agree well
with our theoretical predictions. Sideband transitions are important in
realizing qubit-photon and qubit-qubit entanglement in the circuit quantum
electrodynamics architecture for quantum information processing.Comment: 4 pages, 5 figures, version with high resolution figures available at
http://qudev.ethz.ch/content/science/PubsPapers.htm
High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit
By coupling a quantum detector, a superconductor-insulator-superconductor
junction, to a Josephson junction \textit{via} a resonant circuit we probe the
high frequency properties, namely the ac complex admittance and the current
fluctuations of the Josephson junction at the resonant frequencies. The
admittance components show frequency dependent singularities related to the
superconducting density of state while the noise exhibits a strong frequency
dependence, consistent with theoretical predictions. The circuit also allows to
probe separately the emission and absorption noise in the quantum regime of the
superconducting resonant circuit at equilibrium. At low temperature the
resonant circuit exhibits only absorption noise related to zero point
fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure
Proposal for generating and detecting multi-qubit GHZ states in circuit QED
We propose methods for the preparation and entanglement detection of
multi-qubit GHZ states in circuit quantum electrodynamics. Using quantum
trajectory simulations appropriate for the situation of a weak continuous
measurement, we show that the joint dispersive readout of several qubits can be
utilized for the probabilistic production of high-fidelity GHZ states. When
employing a nonlinear filter on the recorded homodyne signal, the selected
states are found to exhibit values of the Bell-Mermin operator exceeding 2
under realistic conditions. We discuss the potential of the dispersive readout
to demonstrate a violation of the Mermin bound, and present a measurement
scheme avoiding the necessity for full detector tomography.Comment: 9 pages, 5 figure
- …