79 research outputs found

    Phylogenetic Analysis of the Thylakoid ATP/ADP Carrier Reveals New Insights into Its Function Restricted to Green Plants

    Get PDF
    ATP is the common energy currency of cellular metabolism in all living organisms. Most of them synthesize ATP in the cytosol or on the mitochondrial inner membrane, whereas land plants, algae, and cyanobacteria also produce it on the thylakoid membrane during the light-dependent reactions of photosynthesis. From the site of synthesis, ATP is transported to the site of utilization via intracellular membrane transporters. One major type of ATP transporters is represented by the mitochondrial ADP/ATP carrier family. Here we review a recently characterized member, namely the thylakoid ATP/ADP carrier from Arabidopsis thaliana (AtTAAC). Thus far, no orthologs of this carrier have been characterized in other organisms, although similar sequences can be recognized in many sequenced genomes. Protein Sequence database searches and phylogenetic analyses indicate the absence of TAAC in cyanobacteria and its appearance early in the evolution of photosynthetic eukaryotes. The TAAC clade is composed of carriers found in land plants and some green algae, but no proteins from other photosynthetic taxa, such as red algae, brown algae, and diatoms. This implies that TAAC-like sequences arose only once before the divergence of green algae and land plants. Based on these findings, it is proposed that TAAC may have evolved in response to the need of a new activity in higher photosynthetic eukaryotes. This activity may provide the energy to drive reactions during biogenesis and turnover of photosynthetic complexes, which are heterogeneously distributed in a thylakoid membrane system composed of appressed and non-appressed regions

    Function and evolution of channels and transporters in photosynthetic membranes

    Get PDF
    Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-013-1412-3) contains supplementary material, which is available to authorized users

    Patient Preferences for Lung Cancer Treatments: A Study Protocol for a Preference Survey Using Discrete Choice Experiment and Swing Weighting

    Get PDF
    Background: Advanced treatment options for non-small cell lung cancer (NSCLC) consist of immunotherapy, chemotherapy, or a combination of both. Decisions surrounding NSCLC can be considered as preference-sensitive because multiple treatments exist that vary in terms of mode of administration, treatment schedules, and benefit–risk profiles. As part of the IMI PREFER project, we developed a protocol for an online preference survey for NSCLC patients exploring differences in preferences according to patient characteristics (preference heterogeneity). Moreover, this study will evaluate and compare the use of two different preference elicitation methods, the discrete choice experiment (DCE) and the swing weighting (SW) task. Finally, the study explores how demographic (i.e., age, gender, and educational level) and clinical (i.e., cancer stage and line of treatment) information, health literacy, health locus of control, and quality of life may influence or explain patient preferences and the usefulness of a digital interactive tool in providing information on preference elicitation tasks according to patients. Methods: An online survey will be implemented with the aim to recruit 510 NSCLC patients in Belgium and Italy. Participants will be randomized 50:50 to first receive either the DCE or the SW. The survey will also collect information on participants' disease-related status, health locus of control, health literacy, quality of life, and perception of the educational tool. Discussion: This protocol outlines methodological and practical steps to quantitatively elicit and study patient preferences for NSCLC treatment alternatives. Results from this study will increase the understanding of which treatment aspects are most valued by NSCLC patients to inform decision-making in drug development, regulatory approval, and reimbursement. Methodologically, the comparison between the DCE and the SW task will be valuable to gain information on how these preference methods perform against each other in eliciting patient preferences. Overall, this protocol may assist researchers, drug developers, and decision-makers in designing quantitative patient preferences into decision-making along the medical product life cycle

    NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    Get PDF
    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice

    Changing the light environment: chloroplast signalling and response mechanisms

    No full text
    International audienc

    Carbonatation sous température variable : effet du réchauffement climatique sur la fiabilité des structures en Béton Armé

    No full text
    National audienceThis study aims at quantifying the effect of global warming on the durability of concrete structures exposed to a risk of corrosion induced by carbonation. Various climate evolution scenarios being available, the purpose is to develop a numerical model for carbonation under variable conditions of temperature, relative humidity and CO 2 pressure, suitable for probabilistic approach, so that the scenarios can be compared through the reliability index of a concrete structure exposed to atmospheric carbonation in several cities in France, and following different global warming scenarios. It appears that global warming and global evolution of relative humidity have a significant impact on structural safety.Cette étude a pour objectif de quantifier l'impact du réchauffement climatique sur la durabilité des structures en béton armé exposées à un risque de corrosion des armatures initiée par la carbonatation du matériau cimentaire. Différents scenarii d'évolution du climat sont envisagés, pour quelques villes françaises, et la comparaison entre eux se fait sur la base de l'indice de fiabilité d'une même structure soumise à ces scenarii. La détermination de l'indice de fiabilité requiert la mise en oeuvre de méthodes probabilistes nécessitant de nombreux appels à un code de simulation numérique, d'où le besoin de développer un outil numérique adapté. A la lumière de cette étude il apparaît que le scenario de réchauffement climatique (évolution du CO 2 , de l'humidité et de la température) a un impact significatif sur la sûreté de l'ouvrage
    corecore