5 research outputs found

    Stratospheric Lifetimes of CFC-12, CCl4, CH4, CH3CL and N20 from Measurements Made By The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer

    Get PDF
    Long lived halogen-containing compounds are important atmospheric constituents since they can act both as a source of chlorine radicals, which go on to catalyse ozone loss, and as powerful greenhouse gases. The long-term impact of these species on the ozone layer is dependent on their stratospheric lifetimes. Using observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) we present calculations of the stratospheric lifetimes of CFC-12, CCl4, CH4, CH3Cl and N2O. The lifetimes were calculated using the slope of the tracer-tracer correlation of these species with CFC-11 at the tropopause. The correlation slopes were corrected for the changing atmospheric concentrations of each species based on age of air and CFC-11 measurements from samples taken aboard the Geophysica aircraft - along with the effective linear trend of the volume mixing ratio (VMR) from tropical ground based AGAGE (Advanced Global Atmospheric Gases Experiment) sites. Stratospheric lifetimes were calculated using a CFC-11 lifetime of 45 yr. These calculations produced values of 113 + (-) 26 (18) yr (CFC-12), 35 + (-) 11 (7) yr (CCl4), 69 + (-) 65 (23) yr (CH3Cl), 123 + (-) 53 (28) yr (N2O) and 195 + (-) 75 (42) yr (CH4). The errors on these values are the weighted 1 sigma non-systematic errors. Systematic errors were estimated by recalculating lifetimes using VMRs which had been modified to reflect differences between ACE-FTS retrieved VMRs and those from other instruments. The results of these calculations, including systematic errors, were as follows: 113 + (-) 32 (20) for CFC-12, 123 + (-) 83 (35) for N2O, 195 + (-) 139 (57) for CH4, 35 + (-) 14 (8) for CCl4 and 69 + (-) 2119 (34) yr for CH3Cl. For CH3Cl & CH4 this represents the first calculation of the stratospheric lifetime using data from a space based instrument

    Global trends

    Get PDF
    Measuring trends in ozone, and most other geophysical variables, requires that a small systematic change with time be determined from signals that have large periodic and aperiodic variations. Their time scales range from the day-to-day changes due to atmospheric motions through seasonal and annual variations to 11 year cycles resulting from changes in the sun UV output. Because of the magnitude of all of these variations is not well known and highly variable, it is necessary to measure over more than one period of the variations to remove their effects. This means that at least 2 or more times the 11 year sunspot cycle. Thus, the first requirement is for a long term data record. The second related requirement is that the record be consistent. A third requirement is for reasonable global sampling, to ensure that the effects are representative of the entire Earth. The various observational methods relevant to trend detection are reviewed to characterize their quality and time and space coverage. Available data are then examined for long term trends or recent changes in ozone total content and vertical distribution, as well as related parameters such as stratospheric temperature, source gases and aerosols

    The EOS Aura Mission

    No full text
    The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments
    corecore