64 research outputs found

    A varied neuropathology career - turning west and east

    Get PDF

    Magnetic Field Amplification in Young Galaxies

    Full text link
    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium (ISM) of young galaxies and determine the growth rate of the small-scale dynamo. We estimate the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached, when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence a magnetic field strength of the order of 10^-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10^-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help to understand why present-day galaxies are highly magnetized.Comment: 13 pages, 8 figures; A&A in pres

    Scalable and Energy-Efficient Millimeter Massive MIMO Architectures: Reflect-Array and Transmit-Array Antennas

    Full text link
    Hybrid analog-digital architectures are considered as promising candidates for implementing millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems since they enable a considerable reduction of the required number of costly radio frequency (RF) chains by moving some of the signal processing operations into the analog domain. However, the analog feed network, comprising RF dividers, combiners, phase shifters, and line connections, of hybrid MIMO architectures is not scalable due to its prohibitively high power consumption for large numbers of transmit antennas. Motivated by this limitation, in this paper, we study novel massive MIMO architectures, namely reflect-array (RA) and transmit-array (TA) antennas. We show that the precoders for RA and TA antennas have to meet different constraints compared to those for conventional MIMO architectures. Taking these constraints into account and exploiting the sparsity of mmWave channels, we design an efficient precoder for RA and TA antennas based on the orthogonal matching pursuit algorithm. Furthermore, in order to fairly compare the performance of RA and TA antennas with conventional fully-digital and hybrid MIMO architectures, we develop a unified power consumption model. Our simulation results show that unlike conventional MIMO architectures, RA and TA antennas are highly energy efficient and fully scalable in terms of the number of transmit antennas.Comment: submitted to IEEE ICC 201

    Intelligent Surface-Aided Transmitter Architectures for Millimeter Wave Ultra Massive MIMO Systems

    Full text link
    In this paper, we study two novel massive multiple-input multiple-output (MIMO) transmitter architectures for millimeter wave (mmWave) communications which comprise few active antennas, each equipped with a dedicated radio frequency (RF) chain, that illuminate a nearby large intelligent reflecting/transmitting surface (IRS/ITS). The IRS (ITS) consists of a large number of low-cost and energy-efficient passive antenna elements which are able to reflect (transmit) a phase-shifted version of the incident electromagnetic field. Similar to lens array (LA) antennas, IRS/ITS-aided antenna architectures are energy efficient due to the almost lossless over-the-air connection between the active antennas and the intelligent surface. However, unlike for LA antennas, for which the number of active antennas has to linearly grow with the number of passive elements (i.e., the lens aperture) due to the non-reconfigurablility (i.e., non-intelligence) of the lens, for IRS/ITS-aided antennas, the reconfigurablility of the IRS/ITS facilitates scaling up the number of radiating passive elements without increasing the number of costly and bulky active antennas. We show that the constraints that the precoders for IRS/ITS-aided antennas have to meet differ from those of conventional MIMO architectures. Taking these constraints into account and exploiting the sparsity of mmWave channels, we design two efficient precoders; one based on maximizing the mutual information and one based on approximating the optimal unconstrained fully digital (FD) precoder via the orthogonal matching pursuit algorithm. Furthermore, we develop a power consumption model for IRS/ITS-aided antennas that takes into account the impacts of the IRS/ITS imperfections, namely the spillover loss, taper loss, aperture loss, and phase shifter loss.Comment: Journal version of arXiv:1811.0294
    • …
    corecore