4 research outputs found

    Cre recombinase expression cooperates with homozygous FLT3 internal tandem duplication knockin mouse model to induce acute myeloid leukemia

    Get PDF
    Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of various Cre recombinases leads to polyclonal expansion of FLT3(ITD/ITD) progenitor cells, induction of a differentiation block and activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative oncogenic mutations in murine models of cancer

    Cell fate determinant Llgl1 is required for propagation of acute myeloid leukemia

    Get PDF
    Scribble complex proteins can influence cell fate decisions and self-renewal capacity of hematopoietic cells. While specific cellular functions of Scribble complex members are conserved in mammalian hematopoiesis, they appear to be highly context dependent. Using CRISPR/Cas9-based genetic screening, we have identified Scribble complex-related liabilities in AML including LLGL1. Despite its reported suppressive function in HSC self-renewal, inactivation of LLGL1 in AML confirms its relevant role for proliferative capacity and development of AML. Its function was conserved in human and murine models of AML and across various genetic backgrounds. Inactivation of LLGL1 results in loss of stemness-associated gene-expression including HoxA-genes and induces a GMP-like phenotype in the leukemia stem cell compartment. Re-expression of HoxA9 facilitates functional and phenotypic rescue. Collectively, these data establish LLGL1 as a specific dependency and putative target in AML and emphasizes its cell-type specific functions

    The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function

    No full text
    Cell fate determinants influence self-renewal potential of hematopoietic stem cells. Scribble and Llgl1 belong to the Scribble polarity complex and reveal tumor-suppressor function in drosophila. In hematopoietic cells, genetic inactivation of Llgl1 leads to expansion of the stem cell pool and increases self-renewal capacity without conferring malignant transformation. Here we show that genetic inactivation of its putative complex partner Scribble results in functional impairment of hematopoietic stem cells (HSC) over serial transplantation and during stress. Although loss of Scribble deregulates transcriptional downstream effectors involved in stem cell proliferation, cell signaling, and cell motility, these effectors do not overlap with transcriptional targets of Llgl1. Binding partner analysis of Scribble in hematopoietic cells using affinity purification followed by mass spectometry confirms its role in cell signaling and motility but not for binding to polarity modules described in drosophila. Finally, requirement of Scribble for self-renewal capacity also affects leukemia stem cell function. Thus, Scribble is a regulator of adult HSCs, essential for maintenance of HSCs during phases of cell stress

    PLCG1 is required for AML1-ETO leukemia stem cell self-renewal

    No full text
    In an effort to identify novel drugs targeting fusion-oncogene induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE) driven AML we uncovered a de-regulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein which is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem- and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO positive leukemic stem cells
    corecore