6 research outputs found

    Complete deficiency of mitochondrial trifunctional protein due to a novel mutation within the beta-subunit of the mitochondrial trifunctional protein gene leads to failure of long-chain fatty acid beta-oxidation with fatal outcome

    No full text
    The mitochondrial trifunctional protein (MTP) is a multienzyme complex which catalyses three of the four chain-shortening reactions in the beta-oxidation of long-chain fatty acids. Clinically, failure of long-chain fatty acid beta-oxidation leads to hypoketotic hypoglycaemia associated with coma, hepatopathy, skeletal myopathy and cardiomyopathy. We report on consanguineous parents with six children, four of whom had unexpectedly died in Egypt during the neonatal period due to cardiomyopathy of unknown aetiology and respiratory failure. After moving to Germany, two further children died at the age of 4 months and 12 h, respectively, with signs of respiratory and cardiac failure, hydrops fetalis and acidosis. Analysis of acylcarnitine profiles in dried blood spots of the last two children by electrospray tandem mass spectrometry was indicative of a long-chain fatty acid beta-oxidation disorder. Both infants were homozygous for a novel missense mutation (976G-->C) within a highly conserved region of the MTP beta-subunit gene. Immunoblot analysis in chorionic villi obtained during the subsequent pregnancy demonstrated absence of MTP. In fibroblasts and liver, activities of all three catalytic units of MTP were markedly decreased, further confirming the diagnosis of MTP deficiency. CONCLUSION: the detected mutation (976G-->C) within the beta-subunit of the mitochondrial trifunctional protein gene destabilises the protein, leading to complete deficiency and a poor prognosis. Immunoblot analysis of mitochondrial trifunctional protein in chorionic villi may be a valuable tool for the prenatal diagnosis of the disorder when the molecular genetic defect is unknow

    Report of an international survey of molecular genetic testing laboratories

    No full text
    Objective: To collect data on the practices of molecular genetic testing (MGT) laboratories for the development of national and international policies for quality assurance (QA). Methods: A web-based survey of MGT laboratory directors (n = 827; response rate 63%) in 18 countries on 3 continents. QA and reporting indices were developed and calculated for each responding laboratory. Results: Laboratory setting varied among and within countries, as did qualifications of the directors. Respondents in every country indicated that their laboratory receives specimens from outside their national borders (64%, n = 529). Pair-wise comparisons of the QA index revealed a significant association with the director having formal training in molecular genetics (p < 0.005), affiliation with a genetics unit (p = 0.003), accreditation of the laboratory (p < 0.005) and participation in proficiency testing (p < 0.005). Research labs had a lower mean report score compared to all other settings (p < 0.05) as did laboratories accessioning <150 samples per year. Conclusion: MGT is provided under widely varying conditions and regulatory frameworks. The data provided here may be a useful guide for policy action at both governmental and professional levels
    corecore