502 research outputs found
Statistical pairwise interaction model of stock market
Financial markets are a classical example of complex systems as they comprise
many interacting stocks. As such, we can obtain a surprisingly good description
of their structure by making the rough simplification of binary daily returns.
Spin glass models have been applied and gave some valuable results but at the
price of restrictive assumptions on the market dynamics or others are
agent-based models with rules designed in order to recover some empirical
behaviours. Here we show that the pairwise model is actually a statistically
consistent model with observed first and second moments of the stocks
orientation without making such restrictive assumptions. This is done with an
approach based only on empirical data of price returns. Our data analysis of
six major indices suggests that the actual interaction structure may be thought
as an Ising model on a complex network with interaction strengths scaling as
the inverse of the system size. This has potentially important implications
since many properties of such a model are already known and some techniques of
the spin glass theory can be straightforwardly applied. Typical behaviours, as
multiple equilibria or metastable states, different characteristic time scales,
spatial patterns, order-disorder, could find an explanation in this picture.Comment: 11 pages, 8 figure
Redundant variables and Granger causality
We discuss the use of multivariate Granger causality in presence of redundant
variables: the application of the standard analysis, in this case, leads to
under-estimation of causalities. Using the un-normalized version of the
causality index, we quantitatively develop the notions of redundancy and
synergy in the frame of causality and propose two approaches to group redundant
variables: (i) for a given target, the remaining variables are grouped so as to
maximize the total causality and (ii) the whole set of variables is partitioned
to maximize the sum of the causalities between subsets. We show the application
to a real neurological experiment, aiming to a deeper understanding of the
physiological basis of abnormal neuronal oscillations in the migraine brain.
The outcome by our approach reveals the change in the informational pattern due
to repetitive transcranial magnetic stimulations.Comment: 4 pages, 5 figures. Accepted for publication in Physical Review
Expanding the Transfer Entropy to Identify Information Subgraphs in Complex Systems
We propose a formal expansion of the transfer entropy to put in evidence
irreducible sets of variables which provide information for the future state of
each assigned target. Multiplets characterized by a large contribution to the
expansion are associated to informational circuits present in the system, with
an informational character which can be associated to the sign of the
contribution. For the sake of computational complexity, we adopt the assumption
of Gaussianity and use the corresponding exact formula for the conditional
mutual information. We report the application of the proposed methodology on
two EEG data sets
Stimulus-dependent maximum entropy models of neural population codes
Neural populations encode information about their stimulus in a collective
fashion, by joint activity patterns of spiking and silence. A full account of
this mapping from stimulus to neural activity is given by the conditional
probability distribution over neural codewords given the sensory input. To be
able to infer a model for this distribution from large-scale neural recordings,
we introduce a stimulus-dependent maximum entropy (SDME) model---a minimal
extension of the canonical linear-nonlinear model of a single neuron, to a
pairwise-coupled neural population. The model is able to capture the
single-cell response properties as well as the correlations in neural spiking
due to shared stimulus and due to effective neuron-to-neuron connections. Here
we show that in a population of 100 retinal ganglion cells in the salamander
retina responding to temporal white-noise stimuli, dependencies between cells
play an important encoding role. As a result, the SDME model gives a more
accurate account of single cell responses and in particular outperforms
uncoupled models in reproducing the distributions of codewords emitted in
response to a stimulus. We show how the SDME model, in conjunction with static
maximum entropy models of population vocabulary, can be used to estimate
information-theoretic quantities like surprise and information transmission in
a neural population.Comment: 11 pages, 7 figure
Inference of kinetic Ising model on sparse graphs
Based on dynamical cavity method, we propose an approach to the inference of
kinetic Ising model, which asks to reconstruct couplings and external fields
from given time-dependent output of original system. Our approach gives an
exact result on tree graphs and a good approximation on sparse graphs, it can
be seen as an extension of Belief Propagation inference of static Ising model
to kinetic Ising model. While existing mean field methods to the kinetic Ising
inference e.g., na\" ive mean-field, TAP equation and simply mean-field, use
approximations which calculate magnetizations and correlations at time from
statistics of data at time , dynamical cavity method can use statistics of
data at times earlier than to capture more correlations at different time
steps. Extensive numerical experiments show that our inference method is
superior to existing mean-field approaches on diluted networks.Comment: 9 pages, 3 figures, comments are welcom
Detection of subthreshold pulses in neurons with channel noise
Neurons are subject to various kinds of noise. In addition to synaptic noise,
the stochastic opening and closing of ion channels represents an intrinsic
source of noise that affects the signal processing properties of the neuron. In
this paper, we studied the response of a stochastic Hodgkin-Huxley neuron to
transient input subthreshold pulses. It was found that the average response
time decreases but variance increases as the amplitude of channel noise
increases. In the case of single pulse detection, we show that channel noise
enables one neuron to detect the subthreshold signals and an optimal membrane
area (or channel noise intensity) exists for a single neuron to achieve optimal
performance. However, the detection ability of a single neuron is limited by
large errors. Here, we test a simple neuronal network that can enhance the
pulse detecting abilities of neurons and find dozens of neurons can perfectly
detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance is
also found both at the level of single neurons and at the level of networks. At
the network level, the detection ability of networks can be optimized for the
number of neurons comprising the network.Comment: 14 pages, 9 figure
Beyond inverse Ising model: structure of the analytical solution for a class of inverse problems
I consider the problem of deriving couplings of a statistical model from
measured correlations, a task which generalizes the well-known inverse Ising
problem. After reminding that such problem can be mapped on the one of
expressing the entropy of a system as a function of its corresponding
observables, I show the conditions under which this can be done without
resorting to iterative algorithms. I find that inverse problems are local (the
inverse Fisher information is sparse) whenever the corresponding models have a
factorized form, and the entropy can be split in a sum of small cluster
contributions. I illustrate these ideas through two examples (the Ising model
on a tree and the one-dimensional periodic chain with arbitrary order
interaction) and support the results with numerical simulations. The extension
of these methods to more general scenarios is finally discussed.Comment: 15 pages, 6 figure
Network information and connected correlations
Entropy and information provide natural measures of correlation among
elements in a network. We construct here the information theoretic analog of
connected correlation functions: irreducible --point correlation is measured
by a decrease in entropy for the joint distribution of variables relative
to the maximum entropy allowed by all the observed variable
distributions. We calculate the ``connected information'' terms for several
examples, and show that it also enables the decomposition of the information
that is carried by a population of elements about an outside source.Comment: 4 pages, 3 figure
Statistical mechanics of transcription-factor binding site discovery using Hidden Markov Models
Hidden Markov Models (HMMs) are a commonly used tool for inference of
transcription factor (TF) binding sites from DNA sequence data. We exploit the
mathematical equivalence between HMMs for TF binding and the "inverse"
statistical mechanics of hard rods in a one-dimensional disordered potential to
investigate learning in HMMs. We derive analytic expressions for the Fisher
information, a commonly employed measure of confidence in learned parameters,
in the biologically relevant limit where the density of binding sites is low.
We then use techniques from statistical mechanics to derive a scaling principle
relating the specificity (binding energy) of a TF to the minimum amount of
training data necessary to learn it.Comment: 25 pages, 2 figures, 1 table V2 - typos fixed and new references
adde
- âŠ