1,765 research outputs found

    Discrete modes of social information processing predict individual behavior of fish in a group

    Full text link
    Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an active mode in which they are sensitive to the swimming patterns of conspecifics, and a passive mode where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors behavior. At the group level, switching between active and passive modes is uncorrelated among fish, yet correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multi-modal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates, as well as to other species

    An information theoretic approach to the functional classification of neurons

    Get PDF
    A population of neurons typically exhibits a broad diversity of responses to sensory inputs. The intuitive notion of functional classification is that cells can be clustered so that most of the diversity is captured in the identity of the clusters rather than by individuals within clusters. We show how this intuition can be made precise using information theory, without any need to introduce a metric on the space of stimuli or responses. Applied to the retinal ganglion cells of the salamander, this approach recovers classical results, but also provides clear evidence for subclasses beyond those identified previously. Further, we find that each of the ganglion cells is functionally unique, and that even within the same subclass only a few spikes are needed to reliably distinguish between cells.Comment: 13 pages, 4 figures. To appear in Advances in Neural Information Processing Systems (NIPS) 1

    PHYS 121 - 006 - 008: Physics II Lecture

    Get PDF

    Maximum entropy models for antibody diversity

    Full text link
    Recognition of pathogens relies on families of proteins showing great diversity. Here we construct maximum entropy models of the sequence repertoire, building on recent experiments that provide a nearly exhaustive sampling of the IgM sequences in zebrafish. These models are based solely on pairwise correlations between residue positions, but correctly capture the higher order statistical properties of the repertoire. Exploiting the interpretation of these models as statistical physics problems, we make several predictions for the collective properties of the sequence ensemble: the distribution of sequences obeys Zipf's law, the repertoire decomposes into several clusters, and there is a massive restriction of diversity due to the correlations. These predictions are completely inconsistent with models in which amino acid substitutions are made independently at each site, and are in good agreement with the data. Our results suggest that antibody diversity is not limited by the sequences encoded in the genome, and may reflect rapid adaptation to antigenic challenges. This approach should be applicable to the study of the global properties of other protein families

    Probabilistic models of individual and collective animal behavior

    Get PDF
    Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie's Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data.Comment: 26 pages, 11 figure
    corecore