76 research outputs found

    Molekularbiologische Charakterisierung der Masernvirusreplikation in zentralen Nervensystem von Lewis- und BN-Ratten

    Get PDF
    Einleitung: Das Masernvirus (MV) ist ein hochkontagiöser, primatenpathogener Erreger, der für die bekannte Masernerkrankung verantwortlich ist...No abstract available

    Cytoskeletal Dynamics: Concepts in Measles Virus Replication and Immunomodulation

    Get PDF
    In common with most viruses, measles virus (MV) relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp) complex with receptors present on lymphocytes and dendritic cells (DCs), that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS) with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level

    Induction of Membrane Ceramides: A Novel Strategy to Interfere with T Lymphocyte Cytoskeletal Reorganisation in Viral Immunosuppression

    Get PDF
    Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K) signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV), which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM) and acid (ASM) sphingomyelinase–dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to β1 integrin ligation or αCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics

    The Role of Sphingomyelin Breakdown in Measles Virus Immunmodulation

    Get PDF
    Measles virus (MV) efficiently causes generalized immunosuppression which accounts to a major extent for cases of measles-asscociated severe morbidity and mortality. MV infections alter many functions of antigen presenting cells (APC) (dendritic cells (DCs)) and lymphocytes, yet many molecular targets of the virus remain poorly defined. Cellular interactions and effector functions of DCs and lymphocytes are regulated by surface receptors. Associating with other proteins involved in cell signaling, receptors form part of receptosomes that respond to and transmit external signals through dynamic interctions with the cytoskeleton. Alterations in the composition and metabolism of membrane sphingolipids have a substantial impact on both processes. In this review we focus on the regulation of sphingomyelinase activity and ceramide release in cells exposed to MV and discuss the immunosuppressive role of sphingomyelin breakdown induced by MV

    Spontaneous and differentiation dependent regulation of measles virus gene expression in human glial cells

    Get PDF
    The expression of measles virus (MV) in six different permanent human glioma cell lines (D-54, U-251, U-138, U-105, U-373, and D-32) was analyzed. Although all celllines were permissive for productive replication of all MV strains tested, U-251, D-54, and D-32 cells spontaneously revealed restrictions of MV transcription similar to those observed for primary rat astroglial cells and brain tissue. In vitro differentiation of D-54 and U-251 cells by substances affecting tbe intracellular cyclic AMP Ievel caused a significant reduction of tbe expression of tbe viral proteins after 18, 72, and 144 b of infection. This pronounced restriction was not paralleled to a comparable Ievel by an inhibition of tbe syntbesis and biological activity in vitro of virus·specific mRNAs as sbown by quantitative Northem (RNA) blot analyses and in vitro translation. The block in viral protein syntbesis could not be attributed to tbe induction of type I interferon by any of tbe substances tested. Our findings indicate tbat down-regulation of MV gene expression in human brain cells can occur by a cell type-rlependent regulation of tbe viral mRNA transcription and a differentiation-dependent regulation of translation, botb of wbicb may be crucial for the establisbment of persistent MV infections in tbe centrat nervous system

    DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells

    Get PDF
    As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DCSIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DCSIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses

    RNA Interference with Measles Virus N, P, and L mRNAs Efficiently Prevents and with Matrix Protein mRNA Enhances Viral Transcription

    No full text
    In contrast to studies with genetically modified viruses, RNA interference allows the analysis of virus infections with identical viruses and posttranscriptional ablation of individual gene functions. Using RNase III-generated multiple short interfering RNAs (siRNAs) against the six measles virus genes, we found efficient downregulation of viral gene expression in general with siRNAs against the nucleocapsid (N), phosphoprotein (P), and polymerase (L) mRNAs, the translation products of which form the ribonucleoprotein (RNP) complex. Silencing of the RNP mRNAs was highly efficient in reducing viral messenger and genomic RNAs. siRNAs against the mRNAs for the hemagglutinin (H) and fusion (F) proteins reduced the extent of cell-cell fusion. Interestingly, siRNA-mediated knockdown of the matrix (M) protein not only enhanced cell-cell fusion but also increased the levels of both mRNAs and genomic RNA by a factor of 2 to 2.5 so that the genome-to-mRNA ratio was constant. These findings indicate that M acts as a negative regulator of viral polymerase activity, affecting mRNA transcription and genome replication to the same extent
    • …
    corecore