4,863 research outputs found

    Degradation of Bi-2223 tape after cooling with superfluid helium

    Get PDF

    Role of interactions in 87Rb-40K Bose-Fermi mixtures in a 3d optical lattice

    Full text link
    We investigate the effect of interspecies interaction on a degenerate mixture of bosonic 87Rb and fermionic 40K atoms in a three-dimensional optical lattice potential. Using a Feshbach resonance, the 87Rb-40K interaction is tuned over a wide range. Through an analysis of the 87Rb momentum distribution, we find a pronounced asymmetry between strong repulsion and strong attraction. In the latter case, the Bose-Hubbard parameters are renormalized due to self-trapping, leading to a marked shift in the superfluid to Mott insulator transition with increasing Bose-Fermi interaction.Comment: 5 pages, 4 figure

    Quantum Coherence of Image-Potential States

    Full text link
    The quantum dynamics of the two-dimensional image-potential states in front of the Cu(100) surface is measured by scanning tunneling microscopy (STM) and spectroscopy (STS). The dispersion relation and the momentum resolved phase-relaxation time of the first image-potential state are determined from the quantum interference patterns in the local density of states (LDOS) at step edges. It is demonstrated that the tip-induced Stark shift does not affect the motion of the electrons parallel to the surface.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 figures; corrected typos, minor change

    Large angle magnetization dynamics measured by time-resolved ferromagnetic resonance

    Full text link
    A time-resolved ferromagnetic resonance technique was used to investigate the magnetization dynamics of a 10 nm thin Permalloy film. The experiment consisted of a sequence of magnetic field pulses at a repetition rate equal to the magnetic systems resonance frequency. We compared data obtained by this technique with conventional pulsed inductive microwave magnetometry. The results for damping and frequency response obtained by these two different methods coincide in the limit of a small angle excitation. However, when applying large amplitude field pulses, the magnetization had a non-linear response. We speculate that one possible cause of the nonlinearity is related to self-amplification of incoherence, known as the Suhl instabilities.Comment: 23 pages, 8 figures, submitted to PR

    Modification of spintronic terahertz emitter performance through defect engineering

    Full text link
    Spintronic ferromagnetic/non-magnetic heterostructures are novel sources for the generation of THz radiation based on spin-to-charge conversion in the layers. The key technological and scientific challenge of THz spintronic emitters is to increase their intensity and frequency bandwidth. Our work reveals the factors to engineer spintronic Terahertz generation by introducing the scattering lifetime and the interface transmission for spin polarized, non-equilibrium electrons. We clarify the influence of the electron-defect scattering lifetime on the spectral shape and the interface transmission on the THz amplitude, and how this is linked to structural defects of bilayer emitters. The results of our study define a roadmap of the properties of emitted as well as detected THz-pulse shapes and spectra that is essential for future applications of metallic spintronic THz emitters.Comment: 33 pages, 13 figure

    Future upgrade of the superconducting high field facility HOMER II to 25 T

    Get PDF
    corecore