29,595 research outputs found

    Finite temperature superfluid density in very underdoped cuprates

    Full text link
    The combination of a large superconducting gap, low transition temperature, and quasi two-dimensionality in strongly underdoped high temperature superconductors severely constrains the behavior of the ab-plane superfluid density \rho with temperature T. In particular, we argue that the contribution of nodal quasiparticles to \rho(T) is essential to account both for the amplitude of, and the recently observed deviations from, the Uemura scaling. A relation between T_c and \rho(0) which combines the effects of quasiparticle excitations at low temperatures and of vortex fluctuations near the critical temperature is proposed and discussed in light of recent experiments.Comment: 5 RevTex pages, 4 figures (one new); more discussion and comparison with experiment; version to appear in Phys. Rev.

    Magnetic field induced 3D to 1D crossover in type II superconductors

    Full text link
    We review and analyze magnetization and specific heat investigations on type-II superconductors which uncover remarkable evidence for the magnetic field induced fnite size effect and the associated 3D to 1D crossover which enhances thermal fluctuations.Comment: 26 pages, 19 figure

    Evaluation of the impact on audiences of Inside Out of Mind, research-based theatre for dementia carers

    Get PDF
    Background Inside Out of Mind is an ethno-drama about dementia carers in hospital, intended to raise awareness of this role, and about dementia care in general. Following a successful premiere in 2013, it was taken on a live tour funded by the Big Lottery through Arts Council England to six cities. This paper explores the impact on audiences consisting largely of professional carers. Methods Mixed methods were applied; semi-structured self-completion questionnaires for post-show feedback, and one month later telephone interviews to a stratified sample of respondents. Framework analysis was used to explore the data, paying particular attention to critical comments. Results Of the 5,426 people who attended, 19% completed post-show questionnaires. Sixty-four were subsequently interviewed in depth. Both lay and professional audience members expressed heightened awareness of the needs of people with dementia. They expressed greater appreciation of the care process and the challenges faced by the people employed to care for people with dementia in hospitals and other long-term settings. Conclusions As research-based theatre this production of Inside Out of Mind afforded an effective medium for knowledge transfer. It engaged audiences with the key issues - including dignity, identity and loss - and enabled them to relate these to their own lives, while encouraging appropriate practical responses

    g-factor of a tightly bound electron

    Get PDF
    We study the hyperfine splitting of an electron in hydrogen-like 209Bi82+^{209}Bi ^{82+} . It is found that the hfs energy splitting can be explained well by considering the g-factor reduction due to the binding effect of a bound electron. We determine for the first time the experimental value of the magnetic moment of a tightly bound electron.Comment: 6 pages, Latex, Phys. Rev. A in pres

    Isotope effects in underdoped cuprate superconductors: a quantum phenomenon

    Full text link
    We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in - plane penetration depth naturally follows from the doping driven 3D-2D crossover, the 2D quantum superconductor to insulator transition (QSI) in the underdoped limit and the change of the relative doping concentration upon isotope substitution. Close to the QSI transition both, the isotope coefficient of transition temperature and penetration depth approach the coefficient of the relative dopant concentration, and its divergence sets the scale. These predictions are fully consistent with the experimental data and imply that close to the underdoped limit the unusual isotope effect on transition temperature and penetration depth uncovers critical phenomena associated with the quantum superconductor to insulator transition in two dimensions.Comment: 6 pages, 3 figure

    Theory of non-equilibrium electronic Mach-Zehnder interferometer

    Full text link
    We develop a theoretical description of interaction-induced phenomena in an electronic Mach-Zehnder interferometer formed by integer quantum Hall edge states (with \nu =1 and 2 channels) out of equilibrium. Using the non-equilibrium functional bosonization framework, we derive an effective action which contains all the physics of the problem. We apply the theory to the model of a short-range interaction and to a more realistic case of long-range Coulomb interaction. The theory takes into account interaction-induced effects of dispersion of plasmons, charging, and decoherence. In the case of long-range interaction we find a good agreement between our theoretical results for the visibility of Aharonov-Bohm oscillations and experimental data.Comment: 19 pages, 10 figure

    Low-Spin Spectroscopy of 50Mn

    Get PDF
    The data on low spin states in the odd-odd nucleus 50Mn investigated with the 50Cr(p,ngamma)50Mn fusion evaporation reaction at the FN-TANDEM accelerator in Cologne are reported. Shell model and collective rotational model interpretations of the data are given.Comment: 7 pages, 2 figures, to be published in the proceedings of the "Bologna 2000 - Structure of the Nucleus at the Dawn of the Century" Conference, (Bologna, Italy, May 29 - June 3, 2000

    Multi-layer atom chips for versatile atom micro manipulation

    Full text link
    We employ a combination of optical UV- and electron-beam-lithography to create an atom chip combining sub-micron wire structures with larger conventional wires on a single substrate. The new multi-layer fabrication enables crossed wire configurations, greatly enhancing the flexibility in designing potentials for ultra cold quantum gases and Bose-Einstein condensates. Large current densities of >6 x 10^7 A/cm^2 and high voltages of up to 65 V across 0.3 micron gaps are supported by even the smallest wire structures. We experimentally demonstrate the flexibility of the next generation atom chip by producing Bose-Einstein condensates in magnetic traps created by a combination of wires involving all different fabrication methods and structure sizes.Comment: 4 pages, 5 figure

    Gravitational Lensing by Power-Law Mass Distributions: A Fast and Exact Series Approach

    Get PDF
    We present an analytical formulation of gravitational lensing using familiar triaxial power-law mass distributions, where the 3-dimensional mass density is given by ρ(X,Y,Z)=ρ0[1+(Xa)2+(Yb)2+(Zc)2]−Μ/2\rho(X,Y,Z) = \rho_0 [1 + (\frac{X}{a})^2 + (\frac{Y}{b})^2 + (\frac{Z}{c})^2]^{-\nu/2}. The deflection angle and magnification factor are obtained analytically as Fourier series. We give the exact expressions for the deflection angle and magnification factor. The formulae for the deflection angle and magnification factor given in this paper will be useful for numerical studies of observed lens systems. An application of our results to the Einstein Cross can be found in Chae, Turnshek, & Khersonsky (1998). Our series approach can be viewed as a user-friendly and efficient method to calculate lensing properties that is better than the more conventional approaches, e.g., numerical integrations, multipole expansions.Comment: 24 pages, 3 Postscript figures, ApJ in press (October 10th
    • 

    corecore