60,171 research outputs found

    The Chandra X-ray view of the power sources in Cepheus A

    Full text link
    The central part of the massive star-forming region Cepheus A contains several radio sources which indicate multiple outflow phenomena, yet the driving sources of the individual outflows have not been identified. We present a high-resolution Chandra observation of this region that shows the presence of bright X-ray sources, consistent with active pre-main sequence stars, while the strong absorption hampers the detection of less luminous objects. A new source has been discovered located on the line connecting H_2 emission regions at the eastern and western parts of Cepheus A. This source could be the driving source of HH 168. We present a scenario relating the observed X-ray and radio emission.Comment: 7 pages, 6 figures, accepted for publication in A&

    Brain homeostasis : VEGF receptor 1 and 2 ; two unequal brothers in mind

    Get PDF
    Vascular endothelial growth factors (VEGFs), initially thought to act specifically on the vascular system, exert trophic effects on neural cells during development and adulthood. Therefore, the VEGF system serves as a promising therapeutic target for brain pathologies, but its simultaneous action on vascular cells paves the way for harmful side effects. To circumvent these deleterious effects, many studies have aimed to clarify whether VEGFs directly affect neural cells or if the effects are mediated secondarily via other cell types, like vascular cells. A great number of reports have shown the expression and function of VEGF receptors (VEGFRs), mainly VEGFR-1 and -2, in neural cells, where VEGFR-2 has been described as the major mediator of VEGF-A signals. This review aims to summarize and compare the divergent roles of VEGFR-1 and -2 during CNS development and homeostasis

    Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses

    Get PDF
    The two outer triangular caustics (regions of infinite magnification) of a close binary microlens move much faster than the components of the binary themselves, and can even exceed the speed of light. When ϵ>1\epsilon > 1, where ϵc\epsilon c is the caustic speed, the usual formalism for calculating the lens magnification breaks down. We develop a new formalism that makes use of the gravitational analog of the Li\'enard-Wiechert potential. We find that as the binary speeds up, the caustics undergo several related changes: First, their position in space drifts. Second, they rotate about their own axes so that they no longer have a cusp facing the binary center of mass. Third, they grow larger and dramatically so for ϵ>>1\epsilon >> 1. Fourth, they grow weaker roughly in proportion to their increasing size. Superluminal caustic-crossing events are probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap

    The evolution of the jet from Herbig Ae star HD 163296 from 1999 to 2011

    Full text link
    Young A and B stars, the so-called Herbig Ae/Be stars (HAeBe), are surrounded by an active accretion disk and drive outflows. We study the jet HH 409, which is launched from the HAeBe star HD 163296, using new and archival observations from Chandra and HST/STIS. In X-rays we can show that the central source is not significantly extended. The approaching jet, but not the counter-jet, is detected in Ly alpha. In addition, there is red-shifted Ly alpha emission extended in the same direction as the jet, that is also absent in the counter-jet. We can rule out an accretion or disk-wind origin for this feature. In the optical we find the knots B and B2 in the counter-jet. Knot B has been observed previously, so we can derive its proper motion of 0.37+-0.01 arcsec/yr. Its electron density is 3000/cm^3, thus the cooling time scale is a few months only, so the knot needs to be reheated continuously. The shock speed derived from models of H alpha and forbidden emission lines (FELs) decreased from 50 km/s in 1999 to 30 km/s in 2011 because the shock front loses energy as it travels along the jet. Knot B2 is observed at a similar position in 2011 as knot B was in 1999, but shows a lower ionization fraction and higher mass loss rate, proving variations in the jet launching conditions.Comment: 14 pages, 8 figures, accepted by A&

    High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood

    Full text link
    Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy. Finally, we check the possibility of angular momentum transfer from the hot Jupiters to the host stars in the three binary systems among our sample, but find only weak indications for increased stellar rotation periods of WASP-77 and HAT-P-20.Comment: 11 pages, 5 figures, accepted for publication in A&

    Energy-limited escape revised

    Full text link
    Gas planets in close proximity to their host stars experience photoevaporative mass loss. The energy-limited escape concept is generally used to derive estimates for the planetary mass-loss rates. Our photoionization hydrodynamics simulations of the thermospheres of hot gas planets show that the energy-limited escape concept is valid only for planets with a gravitational potential lower than log10(ΦG)<13.11 \log_\mathrm{10}\left( -\Phi_{\mathrm{G}}\right) < 13.11~erg\,g1^{-1} because in these planets the radiative energy input is efficiently used to drive the planetary wind. Massive and compact planets with log10(ΦG)13.6 \log_\mathrm{10}\left( -\Phi_{\mathrm{G}}\right) \gtrsim 13.6~erg\,g1^{-1} exhibit more tightly bound atmospheres in which the complete radiative energy input is re-emitted through hydrogen Lyα\alpha and free-free emission. These planets therefore host hydrodynamically stable thermospheres. Between these two extremes the strength of the planetary winds rapidly declines as a result of a decreasing heating efficiency. Small planets undergo enhanced evaporation because they host expanded atmospheres that expose a larger surface to the stellar irradiation. We present scaling laws for the heating efficiency and the expansion radius that depend on the gravitational potential and irradiation level of the planet. The resulting revised energy-limited escape concept can be used to derive estimates for the mass-loss rates of super-Earth-sized planets as well as massive hot Jupiters with hydrogen-dominated atmospheres.Comment: 5 pages, 5 figures, accepted for publication in A&

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure
    corecore