991 research outputs found
Recommended from our members
Carbon dioxide, hydrographic, and chemical data obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, December 1992--January 1993)
This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}), total alkalinity at Hydrographic stations as well as the underway partial pressure of CO{sub 2} (pCO{sub 2}) during the R/V Meteor Cruise M22/5 in the South Atlantic Ocean (Section A10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Rio de Janeiro on 27 December 1992, and ended after 36 days at sea in Capetown, South Africa on 31 January 1993. Instructions for accessing the data are provided. TCO{sub 2} was measured using tow automated sample processors for extracting CO{sub 2} from seawater samples which were coupled to a Coulometer for detection of the extracted CO{sub 2}. The overall precision and accuracy of the analyses was {+-} 1.9 {micro}mol/kg. Samples collected for total alkalinity were measured by potentiometric titration; precision was {+-} 2.0 {micro}mol/kg. Underway pCO{sub 2} was measured by Infra Red (IR) Photometry; precision was {+-} 2.0 {micro}atm. From these cruises the large-scale three-dimensional distribution of temperature, salinity, and chemical constituents, including the carbonate system parameters will be mapped. Knowledge of these parameters and their initial conditions will allow determination of heat and water transports as well as carbon transport. An understanding of these transports will contribute to the understanding of processes which are relevant for climate change. This section in the South Atlantic subtropical Gyre is especially relevant for CO{sub 2} transport because it crosses both the Brazil and the Benguela Boundary Currents
Recommended from our members
Carbon dioxide, hydrographic, and chemical data obtained during the R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E, September 1991)
The North Atlantic Ocean is characterized by an intense meridional circulation cell carrying near-surface waters of tropical and subtropical origin northward and deep waters of arctic and subarctic origin southward. The related {open_quotes}overturning{close_quotes} is driven by the sinking of water masses at high latitudes. The overturning rate and thus the intensity of the meridional transports of mass, heat, and salt, is an important control parameter for the modeling of the ocean`s role in climate. The Research Vessel (R/V) Meteor Cruise 18/1 was one in a series of cruises in the North Atlantic that started in March 1991 and continued until 1995. This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations, as well as underway partial pressure of CO{sub 2} (pCO{sub 2}) measured during the RIV Meteor Cruise 18/1 in the North Atlantic Ocean (Section A1E). Conducted as part of the World Ocean Circulation Experiment (WOCE) and the German North Atlantic Overturning Rate Determination expedition, the cruise began in Reykjavik, Iceland, on September 2, 1991, and ended after 24 days at sea in Hamburg, Germany, on September 25, 1991. WOCE Zonal Section AlE began at 60{degrees}N and 42{degrees}30{prime} W (southeast of Greenland) and continued southeast with a closely spaced series of hydrocasts to 52{degrees}20{prime} N and 14{degrees}15{prime} W (Porcupine Shelves). Measurements made along WOCE Section AlE included pressure, temperature, salinity, and oxygen measured by a conductivity, temperature and depth (CTD) sensor; bottle salinity; oxygen; phosphate; nitrate; nitrite; silicate; TCO{sub 2}; TALK; and underway pCO{sub 2}. A total of 61 CTD casts were made, including 59 bottle casts and 2 calibration stations
Association of helicobacter pylori positivity with risk of disease and mortality
BACKGROUND: Helicobacter pylori colonizes the human stomach. Infection causes chronic gastritis and increases the risk for gastroduodenal ulcer and gastric cancer. Its chronic colonization in the stomach triggers aberrant epithelial and inflammatory signals, that are also associated with systemic alterations. METHODS: Using PheWAS analysis in more than 8.000 participants in the community-based UK Biobank we explored the association of H. pylori positivity with gastric and extra gastric disease and mortality in a European country. RESULTS: Along with well-established gastric diseases we dominantly found overrepresented cardiovascular, respiratory, and metabolic disorders. Using multivariate analysis, the overall mortality of H. pylori positive participants was not altered, while the respiratory and COVID-19 associated mortality increased. Lipidomic analysis for H. pylori positive participants revealed a dyslipidemic profile with reduced HDL cholesterol and omega-3 fatty acids, which may represent a causative link between infection, systemic inflammation, and disease. CONCLUSION: Our study of H. pylori positivity demonstrates that it plays an organ- and disease entity-specific role in the development of human disease and highlight the importance of further research into the systemic effects of H. pylori infection
Ferromagnetism in Mn doped GaAs due to substitutional-interstitial complexes
While most calculations on the properties of the ferromagnetic semiconductor
GaAs:Mn have focussed on isolated Mn substituting the Ga site (Mn), we
investigate here whether alternate lattice sites are favored and what the
magnetic consequences of this might be. Under As-rich (Ga-poor) conditions
prevalent at growth, we find that the formation energies are lower for
Mn over interstitial Mn (Mn).As the Fermi energy is shifted towards
the valence band maximum via external -doping, the formation energy of
Mn is reduced relative to Mn. Furthermore, under epitaxial growth
conditions, the solubility of both substitutional and interstitial Mn are
strongly enhanced over what is possible under bulk growth conditions. The high
concentration of Mn attained under epitaxial growth of p-type material opens
the possibility of Mn atoms forming small clusters. We consider various types
of clusters, including the Coulomb-stabilized clusters involving two Mn
and one Mn. While isolated Mn are hole killers (donors), and therefore
destroy ferromagnetism,complexes such as Mn-Mn-Mn) are found
to be more stable than complexes involving Mn-Mn-Mn. The
former complexes exhibit partial or total quenching of holes, yet Mn in
these complexes provide a channel for a ferromagnetic arrangement of the spins
on the two Mn within the complex. This suggests that ferromagnetism in
Mn doped GaAs arises both from holes due to isolated Mn as well as from
strongly Coulomb stabilized Mn-Mn-Mn clusters.Comment: 7 figure
Population redistribution in optically trapped polar molecules
We investigate the rovibrational population redistribution of polar molecules
in the electronic ground state induced by spontaneous emission and blackbody
radiation. As a model system we use optically trapped LiCs molecules formed by
photoassociation in an ultracold two-species gas. The population dynamics of
vibrational and rotational states is modeled using an ab-initio electric dipole
moment function and experimental potential energy curves. Comparison with the
evolution of the v"=3 electronic ground state yields good qualitative
agreement. The analysis provides important input to assess applications of
ultracold LiCs molecules in quantum simulation and ultracold chemistry.Comment: 6 pages, 5 figures, EPJD Topical issue on Cold Quantum Matter -
Achievements and Prospect
Mapping the contribution of single muscles to facial movements in the rhesus macaque
The rhesus macaque (Macaca mulatta) is the most utilized primate model in the biomedical and psychological sciences. Expressive behavior is of interest to scientists studying these animals, both as a direct variable (modeling neuropsychiatric disease, where expressivity is a primary deficit), as an indirect measure of health and welfare, and also in order to understand the evolution of communication. Here, intramuscular electrical stimulation of facial muscles was conducted in the rhesus macaque in order to document the relative contribution of each muscle to the range of facial movements and to compare the expressive function of homologous muscles in humans, chimpanzees and macaques. Despite published accounts that monkeys possess less differentiated and less complex facial musculature, the majority of muscles previously identified in humans and chimpanzees were stimulated successfully in the rhesus macaque and caused similar appearance changes. These observations suggest that the facial muscular apparatus of the monkey has extensive homology to the human face. The muscles of the human face, therefore, do not represent a significant evolutionary departure from those of a monkey species. Thus, facial expressions can be compared between humans and rhesus macaques at the level of the facial musculature, facilitating the systematic investigation of comparative facial communication
Carbon Dioxide (CO2) Fluxes From Terrestrial and Aquatic Environments in a High-Altitude Tropical Catchment
High-altitude tropical grasslands, known as “páramos,” are characterized by high solar radiation, high precipitation, and low temperature. They also exhibit some of the highest ecosystem carbon stocks per unit area on Earth. Recent observations have shown that páramos may be a net source of CO2 to the atmosphere as a result of climate change; however, little is known about the source of this excess CO2 in these mountainous environments or which landscape components contribute the most CO2. We evaluated the spatial and temporal variability of surface CO2 fluxes to the atmosphere from adjacent terrestrial and aquatic environments in a high-altitude catchment of Ecuador, based on a suite of field measurements performed during the wet season. Our findings revealed the importance of hydrologic dynamics in regulating the magnitude and likely fate of dissolved carbon in the stream. While headwater catchments are known to contribute disproportionately larger amounts of carbon to the atmosphere than their downstream counterparts, our study highlights the spatial heterogeneity of CO2 fluxes within and between aquatic and terrestrial landscape elements in headwater catchments of complex topography. Our findings revealed that CO2 evasion from stream surfaces was up to an order of magnitude greater than soil CO2 efflux from the adjacent terrestrial environment. Stream carbon flux to the atmosphere appeared to be transport limited (i.e., controlled by flow characteristics, turbulent flow, and water velocity) in the upper reaches of the stream, and source limited (i.e., controlled by CO2 and carbon availability) in the lower reaches of the stream. A 4-m waterfall along the channel accounted for up to 35% of the total evasion observed along a 250-m stream reach. These findings represent a first step in understanding ecosystem carbon cycling at the interface of terrestrial and aquatic ecosystems in high-altitude, tropical, headwater catchments
Theory of output coupling for trapped fermionic atoms
We develop a dynamic theory of output coupling, for fermionic atoms initially
confined in a magnetic trap. We consider an exactly soluble one-dimensional
model, with a spatially localized delta-type coupling between the atoms in the
trap and a continuum of free-particle external modes. Two important special
cases are considered for the confinement potential: the infinite box and the
harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that
the trap population does not vanish in the infinite-time limit. For weak
coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding
to the initially occupied energy levels in the trap; the height of these peaks
increases with the energy. As the coupling gets stronger, the energy spectrum
is displaced towards dressed energies of the fermions in the trap. The
corresponding dressed states result from the coupling between the unperturbed
fermionic states in the trap, mediated by the coupling between these states and
the continuum. In the strong-coupling limit, there is a reinforcement of the
lowest-energy dressed mode, which contributes to the energy spectrum of the
outgoing beam more strongly than the other modes. This effect is especially
pronounced for the one-dimensional box, which indicates that the efficiency of
the mode-reinforcement mechanism depends on the steepness of the confinement
potential. In this case, a quasi-monochromatic anti-bunched atomic beam is
obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral
distribution and corresponding figur
LRR-protein RNH1 dampens the inflammasome activation and is associated with COVID-19 severity.
Inflammasomes are cytosolic innate immune sensors of pathogen infection and cellular damage that induce caspase-1-mediated inflammation upon activation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and can be detrimental, such as in coronavirus disease (COVID-19). However, the underlying mechanisms that control inflammasome activation are incompletely understood. Here we report that the leucine-rich repeat (LRR) protein ribonuclease inhibitor (RNH1), which shares homology with LRRs of NLRP (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing) proteins, attenuates inflammasome activation. Deletion of RNH1 in macrophages increases interleukin (IL)-1β production and caspase-1 activation in response to inflammasome stimulation. Mechanistically, RNH1 decreases pro-IL-1β expression and induces proteasome-mediated caspase-1 degradation. Corroborating this, mouse models of monosodium urate (MSU)-induced peritonitis and lipopolysaccharide (LPS)-induced endotoxemia, which are dependent on caspase-1, respectively, show increased neutrophil infiltration and lethality in Rnh1 <sup>-/-</sup> mice compared with wild-type mice. Furthermore, RNH1 protein levels were negatively related with disease severity and inflammation in hospitalized COVID-19 patients. We propose that RNH1 is a new inflammasome regulator with relevance to COVID-19 severity
- …