40,913 research outputs found

    Experimental active and passive dosimetry systems for the NASA Skylab program

    Get PDF
    Active and passive dosimetry instrumentation to measure absorbed dose, charged particle spectra, and linear energy transfer spectra inside the command module and orbital workshop on the Skylab program were developed and tested. The active dosimetry system consists of one integral unit employing both a tissue equivalent ionization chamber and silicon solid state detectors. The instrument measures dose rates from 0.2 millirad/hour to 25 rads/hour, linear energy transfer spectra from 2.8 to 42.4 Kev/micron, and the proton and alpha particle energy spectra from 0.5 to 75 Mev. The active dosimeter is equipped with a portable radiation sensor for use in astronaut on-body and spacecraft shielding surveys during passage of the Skylab through significant space radiations. Data are transmitted in real time or are recorded by onboard spacecraft tape recorder for rapid evaluation of the radiation levels. The passive dosimetry systems consist of twelve (12) hard-mounted assemblies, each containing a variety of passive radiation sensors which are recoverable at the end of the mission for analysis

    Finite temperature superfluid density in very underdoped cuprates

    Full text link
    The combination of a large superconducting gap, low transition temperature, and quasi two-dimensionality in strongly underdoped high temperature superconductors severely constrains the behavior of the ab-plane superfluid density \rho with temperature T. In particular, we argue that the contribution of nodal quasiparticles to \rho(T) is essential to account both for the amplitude of, and the recently observed deviations from, the Uemura scaling. A relation between T_c and \rho(0) which combines the effects of quasiparticle excitations at low temperatures and of vortex fluctuations near the critical temperature is proposed and discussed in light of recent experiments.Comment: 5 RevTex pages, 4 figures (one new); more discussion and comparison with experiment; version to appear in Phys. Rev.

    Virtual chemical reactions for drug design

    Get PDF
    Two methods for the fast, fragment-based combinatorial molecule assembly were developed. The software COLIBREE® (Combinatorial Library Breeding) generates candidate structures from scratch, based on stochastic optimization [1]. Result structures of a COLIBREE design run are based on a fixed scaffold and variable linkers and side-chains. Linkers representing virtual chemical reactions and side-chain building blocks obtained from pseudo-retrosynthetic dissection of large compound databases are exchanged during optimization. The process of molecule design employs a discrete version of Particle Swarm Optimization (PSO) [2]. Assembled compounds are scored according to their similarity to known reference ligands. Distance to reference molecules is computed in the space of the topological pharmacophore descriptor CATS [3]. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor (PPAR gamma) selective agonists. In a second approach, we developed the formal grammar Reaction-MQL [4] for the in silico representation and application of chemical reactions. Chemical transformation schemes are defined by functional groups participating in known organic reactions. The substructures are specified by the linear Molecular Query Language (MQL) [5]. The developed software package contains a parser for Reaction-MQL-expressions and enables users to design, test and virtually apply chemical reactions. The program has already been used to create combinatorial libraries for virtual screening studies. It was also applied in fragmentation studies with different sets of retrosynthetic reactions and various compound libraries

    Experimental probing of the anisotropy of the empty p states near the Fermi level in MgB2

    Full text link
    We have studied the Boron K-edge in the superconductor MgB2 by electron energy loss spectroscopy (EELS) and experimentally resolved the empty p states at the Fermi level that have previously been observed within an energy window of 0.8eV by soft x-ray absorption spectroscopy. Using angular resolved EELS, we find that these states at the immediate edge onset have pxy character in agreement with predictions from first-principle electronic structure calculations.Comment: 15 pages, 5 figure

    Low-energy local density of states of the 1D Hubbard model

    Full text link
    We examine the local density of states (DOS) at low energies numerically and analytically for the Hubbard model in one dimension. The eigenstates represent separate spin and charge excitations with a remarkably rich structure of the local DOS in space and energy. The results predict signatures of strongly correlated excitations in the tunneling probability along finite quantum wires, such as carbon nanotubes, atomic chains or semiconductor wires in scanning tunneling spectroscopy (STS) experiments. However, the detailed signatures can only be partly explained by standard Luttinger liquid theory. In particular, we find that the effective boundary exponent can be negative in finite wires, which leads to an increase of the local DOS near the edges in contrast to the established behavior in the thermodynamic limit.Comment: 6 pages, 4 figures, more information can be found at http://www.physik.uni-kl.de/eggert/papers/index.htm
    • …
    corecore