2,510 research outputs found

    Extrapolation-Based Super-Convergent Implicit-Explicit Peer Methods with A-stable Implicit Part

    Get PDF
    In this paper, we extend the implicit-explicit (IMEX) methods of Peer type recently developed in [Lang, Hundsdorfer, J. Comp. Phys., 337:203--215, 2017] to a broader class of two-step methods that allow the construction of super-convergent IMEX-Peer methods with A-stable implicit part. IMEX schemes combine the necessary stability of implicit and low computational costs of explicit methods to efficiently solve systems of ordinary differential equations with both stiff and non-stiff parts included in the source term. To construct super-convergent IMEX-Peer methods with favourable stability properties, we derive necessary and sufficient conditions on the coefficient matrices and apply an extrapolation approach based on already computed stage values. Optimised super-convergent IMEX-Peer methods of order s+1 for s=2,3,4 stages are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other IMEX-Peer methods are included.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1610.0051

    Denominator Bounds and Polynomial Solutions for Systems of q-Recurrences over K(t) for Constant K

    Full text link
    We consider systems A_\ell(t) y(q^\ell t) + ... + A_0(t) y(t) = b(t) of higher order q-recurrence equations with rational coefficients. We extend a method for finding a bound on the maximal power of t in the denominator of arbitrary rational solutions y(t) as well as a method for bounding the degree of polynomial solutions from the scalar case to the systems case. The approach is direct and does not rely on uncoupling or reduction to a first order system. Unlike in the scalar case this usually requires an initial transformation of the system.Comment: 8 page

    Evaluating the Effectiveness of Natural Language Inference for Hate Speech Detection in Languages with Limited Labeled Data

    Full text link
    Most research on hate speech detection has focused on English where a sizeable amount of labeled training data is available. However, to expand hate speech detection into more languages, approaches that require minimal training data are needed. In this paper, we test whether natural language inference (NLI) models which perform well in zero- and few-shot settings can benefit hate speech detection performance in scenarios where only a limited amount of labeled data is available in the target language. Our evaluation on five languages demonstrates large performance improvements of NLI fine-tuning over direct fine-tuning in the target language. However, the effectiveness of previous work that proposed intermediate fine-tuning on English data is hard to match. Only in settings where the English training data does not match the test domain, can our customised NLI-formulation outperform intermediate fine-tuning on English. Based on our extensive experiments, we propose a set of recommendations for hate speech detection in languages where minimal labeled training data is available.Comment: 15 pages, 7 figures, Accepted at the 7th Workshop on Online Abuse and Harms (WOAH), ACL 202

    Composite Enclaves: Towards Disaggregated Trusted Execution

    Get PDF
    The ever-rising computation demand is forcing the move from the CPU to heterogeneous specialized hardware, which is readily available across modern datacenters through disaggregated infrastructure. On the other hand, trusted execution environments (TEEs), one of the most promising recent developments in hardware security, can only protect code confined in the CPU, limiting TEEs' potential and applicability to a handful of applications. We observe that the TEEs' hardware trusted computing base (TCB) is fixed at design time, which in practice leads to using untrusted software to employ peripherals in TEEs. Based on this observation, we propose \emph{composite enclaves} with a configurable hardware and software TCB, allowing enclaves access to multiple computing and IO resources. Finally, we present two case studies of composite enclaves: i) an FPGA platform based on RISC-V Keystone connected to emulated peripherals and sensors, and ii) a large-scale accelerator. These case studies showcase a flexible but small TCB (2.5 KLoC for IO peripherals and drivers), with a low-performance overhead (only around 220 additional cycles for a context switch), thus demonstrating the feasibility of our approach and showing that it can work with a wide range of specialized hardware
    corecore