42 research outputs found
The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II lambda 1640 in young star clusters
We introduce a Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS spectroscopy of R136 using 17 contiguous 52 arcsec × 0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90 per cent of the 57 sources brighter than mF555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4 If/WN8). We measure wind velocities for 52 early-type stars from C IVλλ1548–51, including 16 O2–3 stars. For the first time, we spectroscopically classify all Weigelt and Baier members of R136a, which comprise three WN5 stars (a1–a3), two O supergiants (a5–a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung–Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5
+0.3−0.7
−0.7+0.3
Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played by the most luminous stars in producing the prominent He II λ1640 emission line. This emission is totally dominated by very massive stars with initial masses above ∼100 M⊙. The presence of strong He II λ1640 emission in the integrated light of very young star clusters (e.g. A1 in NGC 3125) favours an initial mass function extending well beyond a conventional upper limit of 100 M⊙. We include montages of ultraviolet spectroscopy for Large Magellanic Cloud O stars in the appendix. Future studies in this series will focus on optical STIS medium resolution observations
Hydrodynamical simulations and similarity relations for eruptive mass-loss from massive stars
Motivated by the eruptive mass loss inferred from Luminous Blue Variable (LBV) stars, we present 1D hydrodynamical simulations of the response from sudden energy injection into the interior of a very massive () star. For a fiducial case with total energy addition set to a factor of the net stellar binding energy, and applied within the stellar envelope, we detail the dynamical response that leads to ejection of the outermost . We find that the ejecta's variations in time and radius for the velocity , density , and temperature are quite well fit by similarity forms in the variable . Specifically the scaled density follows a simple exponential decline . This `exponential similarity' leads to analytic scaling relations for total ejecta mass and kinetic energy that agree well with the hydrodynamical simulations, with the specific-energy-averaged speed related to the exponential scale speed through , and a value comparable to the star's surface escape speed, . Models with energy added in the core develop a surface shock breakout that propels an initial, higher-speed ejecta (>5000km s), but the bulk of the ejected material still follows the same exponential similarity scalings with . A broader parameter study examines how the ejected mass and energy depends on the energy-addition factor , for three distinct model series that locate the added energy in either the core, envelope, or near-surface. We conclude by discussing the relevance of these results for understanding LBV outbursts and other eruptive phenomena, such as failed supernovae and pulsational pair instability events
Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars
Approximately 10 per cent of massive OBA main-sequence (MS) and pre-MS stars harbour strong, large-scale magnetic fields. At the same time, there is a dearth of magnetic stars in close binaries. A process generating strong magnetic fields only in some stars must be responsible with the merging of pre-MS and MS stars being suggested as one such channel. Stars emerging from the coalescence of two MS stars are rejuvenated, appearing younger than they are. They can therefore be identified by comparison with reference clocks. Here, we predict the rejuvenation of MS merger products over a wide range of masses and binary configurations calibrated to smoothed-particle-hydrodynamical merger models. We find that the rejuvenation is of the order of the nuclear time-scale and is strongest in the lowest mass mergers and the most evolved binary progenitors with the largest mass ratios. These predictions allow us to put constraints on the binary progenitors of merger products. We show that the magnetic stars HR 2949 and τ Sco are younger than the potential binary companion HR 2948 and the Upper-Sco association, respectively, making them promising merger candidates. We find that the age discrepancies and the potential binary progenitors of both are consistent with them being rejuvenated merger products, implying that their magnetic fields may originate from this channel. Searching for age discrepancies in magnetic stars is therefore a powerful way to explore which fraction of magnetic stars may have obtained their strong magnetic field in MS mergers and to improve our understanding of magnetism in massive stars and their remnants
BONNSAI: correlated stellar observables in Bayesian methods
© 2017 ESO. In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that accounting for correlations is essential in order to derive reliable stellar parameters including robust uncertainties and will be vital when entering an era of precision stellar astrophysics thanks to the Gaia satellite.15 pages, 10 figures; accepted for publication in A&Astatus: publishe
THE INCIDENCE OF STELLAR MERGERS AND MASS GAINERS AMONG MASSIVE STARS
Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8^{+9}_{-4}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30^{+10}_{-15}% of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.8 pages, 3 figures, accepted for publication in ApJstatus: publishe
Stellar mergers as the origin of magnetic massive stars
About ten per cent of 'massive' stars (those of more than 1.5 solar masses) have strong, large-scale surface magnetic fields1-3. It has been suggested that merging of main-sequence and pre-main-sequence stars could produce such strong fields4,5, and the predicted fraction of merged massive stars is also about ten per cent6,7. The merger hypothesis is further supported by a lack of magnetic stars in close binaries8,9, which is as expected if mergers produce magnetic stars. Here we report three-dimensional magnetohydrodynamical simulations of the coalescence of two massive stars and follow the evolution of the merged product. Strong magnetic fields are produced in the simulations, and the merged star rejuvenates such that it appears younger and bluer than other coeval stars. This can explain the properties of the magnetic 'blue straggler' star τ Sco in the Upper Scorpius association that has an observationally inferred, apparent age of less than five million years, which is less than half the age of its birth association10. Such massive blue straggler stars seem likely to be progenitors of magnetars, perhaps giving rise to some of the enigmatic fast radio bursts observed11, and their supernovae may be affected by their strong magnetic fields12
The origin of B-type runaway stars: Non-LTE abundances as a diagnostic
There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances for a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample
R144 revealed as a double-lined spectroscopic binary
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new X-shooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope. We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km s-1 in N IV and N V lines. Furthermore, the N III and N V line Doppler shifts are anticorrelated and the N IV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from two to six months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/L⊙ ≈ 6.8) suggests a present-day total mass content in the range of about 200-300 M⊙, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 M⊙. We briefly discuss the presence of such a massive object, 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.Accepted for publication in MNRAS Letters, 5 pages, 3 figuresstatus: publishe