166 research outputs found

    Entropy production by resonance decays

    Get PDF
    We investigate entropy production for an expanding system of particles and resonances with isospin symmetry -- in our case pions and ρ\rho mesons -- within the framework of relativistic kinetic theory. A cascade code to simulate the kinetic equations is developed and results for entropy production and particle spectra are presented.Comment: 17 pages, 10 ps-figures included, only change: preprint number adde

    A systematic comparison of jet quenching in different fluid-dynamical models

    Full text link
    Comparing four different (ideal and viscous) hydrodynamic models for the evolution of the medium created in 200 AGeV Au-Au collisions, combined with two different models for the path length dependence of parton energy loss, we study the effects of jet quenching on the emission-angle dependence of the nuclear suppression factor R_AA(phi) and the away-side per trigger yield I_AA(phi). Each hydrodynamic model was tuned to provide a reasonable description of the single-particle transverse momentum spectra for all collision centralities, and the energy loss models were adjusted to yield the same pion nuclear suppression factor in central Au-Au collisions. We find that the experimentally measured in-plane vs. out-of-plane spread in R_AA(phi) is better reproduced by models that shift the weight of the parton energy loss to later times along its path. Among the models studied here, this is best achieved by energy loss models that suppress energy loss at early times, combined with hydrodynamic models that delay the dilution of the medium density due to hydrodynamic expansion by viscous heating. We were unable to identify a clear tomographic benefit of a measurement of I_AA(phi) over that of R_AA(phi).Comment: 17 pages, 11 figure

    Rapidity particle spectra in sudden hadronization of QGP

    Get PDF
    We show that the remaining internal longitudinal flow of colliding quarks in nuclei offers a natural explanation for the diversity of rapidity spectral shapes observed in Pb--Pb 158AGeV nuclear collisions. Thus QGP sudden hadronization reaction picture is a suitable approach to explain the rapidity spectra of hadrons produced.Comment: 3 pages including 2 figure

    Two-particle interferometry for non-central heavy-ion collisions

    Get PDF
    In non-central heavy ion collisions, identical two particle Hanbury-Brown/Twiss (HBT) correlations C(K,q) depend on the azimuthal direction of the pair momentum K. We investigate the consequences for a harmonic analysis of the corresponding HBT radius parameters. Our discussion includes both, a model- independent analysis of these parameters in the Gaussian approximation, and the study of a class of hydrodynamical models which mimic essential geometrical and dynamical properties of peripheral heavy ion collisions. Also, we discuss the additional geometrical and dynamical information contained in the harmonic coefficients of these HBT radius parameters. The leading contribution of their first and second harmonics are found to satisfy simple constraints. This allows for a minimal, azimuthally sensitive parametrization of all first and second harmonic coefficients in terms of only two additional fit parameters. We determine to what extent these parameters can be extracted from experimental data despite finite multiplicity fluctuations and the resulting uncertainty in the reconstruction of the reaction plane.Comment: 14 pages, RevTeX, 7 eps-figures include

    The inverse Laplace transform as the ultimate tool for transverse mass spectra

    Full text link
    New high statistics data from the second generation of ultrarelativistic heavy-ion experiments open up new possibilities in terms of data analysis. To fully utilize the potential we propose to analyze the mm_\perp-spectra of hadrons using the inverse Laplace transform. The problems with its inherent ill-definedness can be overcome and several applications in other fields like biology, chemistry or optics have already shown its feasability. Moreover, the method also promises to deliver upper bounds on the total information content of the spectra, which is of big importance for all other means of analysis. Here we compute several Laplace inversions from different thermal scenarios, both analytically and numerically, to test the efficiency of the method. Especially the case of a two component structure, related to a possible first order phase transition to a quark gluon plasma, is closer investigated and it is shown that at least a signal to noise ratio of 10410^4 is necessary to resolve two individual components.Comment: 13 pages (PostScript, including figures), BNL-NTHES

    Resonance contributions to HBT correlation radii

    Get PDF
    We study the effect of resonance decays on intensity interferometry for heavy ion collisions. Collective expansion of the source leads to a dependence of the two-particle correlation function on the pair momentum K. This opens the possibility to reconstruct the dynamics of the source from the K-dependence of the measured HBT radii. Here we address the question to what extent resonance decays can fake such a flow signal. Within a simple parametrization for the emission function we present a comprehensive analysis of the interplay of flow and resonance decays on the one- and two-particle spectra. We discuss in detail the non-Gaussian features of the correlation function introduced by long-lived resonances and the resulting problems in extracting meaningful HBT radii. We propose to define them in terms of the second order q-moments of the correlator C(q, K). We show that this yields a more reliable characterisation of the correlator in terms of its width and the correlation strength `lambda' than other commonly used fit procedures. The normalized fourth-order q-moments (kurtosis) provide a quantitative measure for the non-Gaussian features of the correlator. At least for the class of models studied here, the kurtosis helps separating effects from expansion flow and resonance decays, and provides the cleanest signal to distinguish between scenarios with and without transverse flow.Comment: 23 pages, twocolumn RevTeX, 12 eps-figures included, minor changes following referee comment

    Hydrodynamics near the QCD Phase Transition: Looking for the Longest-Lived Fireball

    Get PDF
    We propose a new strategy for the experimental search of the QCD phase transition in heavy ion collisions: One may tune collision energy around the point where the lifetime of the fireball is expected to be longest. We demonstrate that the hydrodynamic evolution of excited nuclear matter does change dramatically as the initial energy density goes through the "softest point" (where the pressure to energy density ratio reaches its minimum). For our choice of equation of state, this corresponds to epsilon_i approx. = 1.5 GeV/fm^3 and collision energy E_lab/A approx. = 30 GeV (for Au+Au). Various observables seem to show distinct changes near the softest point.Comment: 7 pages, 3 Postscript figures (tar compressed and uuencoded) submitte

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet

    Strangeness Conservation in Hot Nuclear Fireballs

    Full text link
    A constraint between thermal fireball parameters arises from the requirement that the balance of strangeness in a fireball is (nearly) zero. We study the impact of this constraint on (multi-)strange (anti-)baryon multiplicities and compare the hadron gas and quark-gluon plasma predictions. We explore the relation between the entropy content and particle multiplicities and show that the data are compatible with the quark-gluon plasma hypothesis, but appear to be inconsistent with the picture of an equilibrated hadron gas fireball. We consider the implications of the results on the dynamics of evolution and decay of the particle source.Comment: 35 pages, 11 postscript figures, report PAR/LPTHE/92--2

    Thermal phenomenology of hadrons from 200 AGeV S+S collisions

    Full text link
    We develop a complete and consistent description for the hadron spectra from heavy ion collisions in terms of a few collective variables, in particular temperature, longitudinal and transverse flow. To achieve a meaningful comparison with presently available data, we also include the resonance decays into our picture. To disentangle the influences of transverse flow and resonance decays in the mTm_T-spectra, we analyse in detail the shape of the mTm_T-spectra.Comment: 31 pages, 13 figs in seperate uuencoded file, for LaTeX, epsf.sty and dvips, TPR-93-16 and BNL-(no number yet
    corecore