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Resonance contributions to HBT correlation radii
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We study the effect of resonance decays on intensity in-
terferometry for heavy ion collisions. Collective expansion of
the source leads to a dependence of the two-particle corre-
lation function on the pair momentum K. This opens the
possibility to reconstruct the dynamics of the source from
the K-dependence of the measured “HBT radii”. Here we
address the question to what extent resonance decays can
fake such a flow signal. Within a simple parametrization for
the emission function we present a comprehensive analysis of
the interplay of flow and resonance decays on the one- and
two-particle spectra. We discuss in detail the non-Gaussian
features of the correlation function introduced by long-lived
resonances and the resulting problems in extracting meaning-
ful HBT radii. We propose to define them in terms of the
second order q-moments of the correlator C(q,K). We show
that this yields a more reliable characterisation of the corre-
lator in terms of its width and the correlation strength λ than
other commonly used fit procedures. The normalized fourth-
order q-moments (kurtosis) provide a quantitative measure for
the non-Gaussian features of the correlator. At least for the
class of models studied here, the kurtosis helps separating ef-
fects from expansion flow and resonance decays, and provides
the cleanest signal to distinguish between scenarios with and
without transverse flow.

I. INTRODUCTION

The only known way to obtain direct experimental
information on the space-time structure of the particle
emitting source created in a relativistic nuclear collision is
through two-particle intensity interferometry [1,2]. This
information is therefore indispensable for an assessment
of theoretical models which try to reconstruct the final
state of the collision from the measured single particle
spectra and particle multiplicity densities in momentum
space. Reliable estimates of the source geometry at par-
ticle freeze-out are crucial for an experimental proof that
high energy heavy ion collisions can successfully gener-
ate large volumes of matter with high energy density.
Direct information from two-particle correlations on the
expansion dynamics at freeze-out further provides essen-
tial constraints for theoretical models which extrapolate
back in time towards the initial stages of the collision in
order to make statements about a possible transition to
deconfined quark matter.

An important insight from recent theoretical research

on Hanbury-Brown–Twiss (HBT) interferometry is that
for dynamical sources which undergo collective expan-
sion the HBT radius parameters, which characterize the
width of the two-particle correlation function, develop a
dependence on the pair momentum [3–13]. The detailed
momentum dependence is somewhat model-dependent,
and in general it is not simple [11]. Still, it opens
the crucial possibility to extract dynamical information
on the source from interferometry data. Unfortunately,
the most abundant candidates for interferometry studies,
charged pions, are strongly contaminated by decay prod-
ucts from unstable resonances some of which only decay
long after hadron freeze-out [14,8]. Such resonance de-
cays were shown to introduce an additional momentum
dependence of the HBT radius parameters and of the in-
tercept parameter [8,15] which complicates the extraction
of the expansion flow.

A systematic approach towards extracting the expan-
sion velocity from experimental HBT data thus presup-
poses a careful analysis of the interplay of flow and res-
onance decays on the gross features of the two-particle
correlation function. This is the aim of the present paper.
We will use for our analysis a simple analytical model for
the source function, which assumes local thermalization
at freeze-out and produces hadronic resonances by ther-
mal excitation. The model incorporates longitudinal and
transverse expansion as well as a finite duration of parti-
cle emission. The two most important parameters for our
considerations, the temperature and transverse expan-
sion velocity at freeze-out, can be varied independently.
Our study thus complements published HBT analyses of
source functions generated by hydrodynamic simulations
where freeze-out is implemented along a sharp hypersur-
face [8] and which do not allow easily to gain physical
intuition by a systematic variation of the model param-
eters. After freeze-out the resonances are allowed to de-
cay according to an exponential proper time distribution
along their trajectories, and the resulting emission func-
tions of daughter particles (pions, kaons, etc.) are added
to the direct emission function of particles of the same
kind before calculating the correlation function. A dis-
cussion of the momentum dependence of resonance de-
cay effects on the 1- and 2-particle spectra requires the
correct treatment of the decay phase-space [8,16,17] and
does not permit the simplifying approximations leading,
e.g., to Eq. (1) in Ref. [18].

The paper is organized as follows: In Sec. II we review
the extraction of space-time information on the source
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from Gaussian fits to the correlation function. This cal-
culational scheme is then extended in Sec. III to include
resonance decay contributions. The next three sections
are devoted to a detailed model study based on this for-
malism. In Sec. IV we describe the model for the emis-
sion function including resonance contributions. Results
for the one- and two-particle spectra are presented in
Sec. V, and a general discussion of the effects from res-
onance decays on the shape of the correlation function
is given there. In Sec. VI we then discuss in detail the
practical difficulties posed by the non-Gaussian features
in the correlation function due to long-lived resonances,
by comparing different fitting procedures. This leads us
in Sec. VII to the alternative method of q-moments which
provide a clean definition of the HBT radii and intercept
parameter even for non-Gaussian correlation functions.
These HBT radii show much weaker resonance decay ef-
fects than the ones obtained in Ref. [8] by fitting a Gaus-
sian function to a non-Gaussian correlator. The normal-
ized fourth q-moment of the correlator, the kurtosis, pro-
vides a quantitative measure for the deviations from a
Gaussian shape as e.g. induced by resonance decays. We
will show that, at least within the general class of source
models studied here, the simultaneous study of the pair
momentum dependence of the HBT radii, the intercept
parameter and the kurtosis allows for a relatively clean
separation of flow and resonance decay effects. We sum-
marize our findings in Sec. VIII. The Appendix contains
some background for readers interested in the technical
details.

II. GAUSSIAN PARAMETRIZATIONS OF THE

CORRELATION FUNCTION

For a given model for the emission function S(x, p)
and assuming incoherent particle production as well as
plane wave propagation, the invariant momentum spec-
trum and two-particle HBT correlation function are given
by [19,3,20]

Ep
dN

d3p
=

∫

d4xS(x, p), (2.1)

C(q,K) ≈ 1 +

∣

∣

∫

d4xS(x,K) eiq·x
∣

∣

2

∣

∣

∫

d4xS(x,K)
∣

∣

2

= 1 +
∣

∣

〈

eiq·x
〉∣

∣

2
, (2.2)

〈f(x)〉 ≡ 〈f(x)〉(K) =

∫

d4x f(x)S(x,K)
∫

d4xS(x,K)
. (2.3)

Eq. (2.2) is written down for identical bosons, and q =
p1 − p2, K = 1

2 (p1 + p2), with p1, p2 on-shell such
that K·q = 0. 〈f(x)〉 ≡ 〈f(x)〉(K) denotes the (K-
dependent) average of an arbitrary space-time function
with the emission function S(x,K). As long as the emis-

sion function is sufficiently Gaussian [11] one can approx-
imate

C(q,K) ≈ 1 + exp [−qµqν〈x̃µx̃ν〉(K)] , (2.4)

where x̃µ(K) = xµ − 〈xµ〉 ≡ xµ − x̄µ(K) is the distance
to the point x̄(K) of maximum emissivity of particles
with momentum K in the source (the so-called “saddle
point” of the source for particles with momentum K).
In this approximation the two-particle correlation func-
tion is completely determined by its Gaussian widths
which in turn are directly given by the (K-dependent)
space-time variances 〈x̃µx̃ν〉 of the emission function.
The latter define the size of regions of homogeneity in
the source [5,10,21,22] which effectively contribute to the
Bose-Einstein correlations. Finer space-time structures
of the source show up in deviations of the correlator from
a Gaussian shape.

In previous studies of analytically given emission func-
tions, the correlator was sufficiently Gaussian to base all
investigations on (2.4). Then one proceeds as follows:
Due to the on-shell constraint K·q = 0 only three of the
four components of q which appear in the exponent are
independent. The dependent component must be elimi-
nated using the relation

q0 = β · q = β⊥qo + βlql . (2.5)

Here β = K/K0 ≈ K/EK , with EK =
√
m2 + K2,

is approximately the velocity of the pair, and we used
the convention that l denotes the “longitudinal” (beam)
direction (z-axis), o denotes the orthogonal “outward”
direction (x-axis) which is oriented such that K =
(K⊥, , 0,Kl) lies in the x-z-plane. Correspondingly β

has no y-component in the third Cartesian direction, the
“sideward” direction: βs = 0. Due to the mass-shell
constraint (2.5), the inverse of the Fourier transform in
(2.2) is not unique. The missing information required for
the reconstruction of the (Gaussian) source in space-time
from the measurable (Gaussian) HBT radii must thus be
provided by model assumptions.

In this paper we will deal only with azimuthally sym-
metric sources for which the correlation function is sym-
metric under qs → −qs [23]. Specifically, we will discuss
two Gaussian parametrizations of C:

1. The Cartesian parametrization [21] is obtained by
using (2.5) to eliminate q0 in (2.4):

C(q,K) = 1 + λ exp
[

−q2s R2
s(K) − q2o R

2
o(K) − q2l R

2
l (K)

−2qoqlR
2
ol(K)

]

. (2.6)

The corresponding size parameters are given by the
space-time variances [24,21]:

R2
s(K) = 〈ỹ2〉 , (2.7a)

R2
o(K) = 〈(x̃− β⊥t̃)

2〉 , (2.7b)

R2
l (K) = 〈(z̃ − βl t̃)

2〉 , (2.7c)

R2
ol(K) = 〈(x̃− β⊥t̃)(z̃ − βlt̃)〉 . (2.7d)
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For a detailed discussion of the meaning of these standard
HBT parameters, in particular of the out-longitudinal
(ol) cross term [21], and how they mix spatial and tem-
poral aspects of the source, see Refs. [10,11,23].

2. If one eliminates in (2.4) qo and qs in terms of q⊥ =
√

q2o + q2s , q
0, and ql one arrives at the Yano-Koonin-

Podgoretskĭı (YKP) parametrization [25,26,23,12]

C(q,K) = 1 + λ exp
[

−R2
⊥(K) q2⊥ −R2

‖(K)(q2l − q0
2
)

−
(

R2
0(K) +R2

‖(K)
)

(q·U(K))
2
]

, (2.8)

where U(K) is a (K-dependent) 4-velocity with only a
longitudinal spatial component:

U(K) = γ(K) (1, 0, 0, v(K)) , with γ =
1√

1 − v2
.

(2.9)

The YKP parameters R2
⊥(K), R2

0(K), and R2
‖(K) ex-

tracted from such a fit do not depend on the longitudinal
velocity of the observer system in which the correlation
function is measured. They can again be expressed in
terms of the space-time variances 〈x̃µx̃ν〉 [12], and take
their simplest form in the frame where v(K) vanishes
[23,12,13] (the approximation in the last two expressions
are discussed in [23,13]):

R2
⊥(K) = R2

s(K) = 〈ỹ2〉 , (2.10a)

R2
‖(K) =

〈

(z̃ − (βl/β⊥)x̃)
2
〉

− (βl/β⊥)2〈ỹ2〉

≈ 〈z̃2〉 , (2.10b)

R2
0(K) =

〈

(

t̃− x̃/β⊥
)2
〉

− 〈ỹ2〉/β2
⊥ ≈ 〈t̃2〉 . (2.10c)

The expressions (2.7,2.10) for the HBT parameters are
useful for two reasons: (i) They result in an apprecia-
ble technical simplification because instead of the Fourier
transform (2.2) only a small number of 4-dimensional real
integrals over the source function must be evaluated to
completely determine the correlation function. Their ac-
curacy has been checked in [11] for models of the type
to be used below and, in the absence of resonance de-
cays, for hydrodynamic sources with a sharp freeze-out
hypersurface in [28]. (ii) They provide an intuitive under-
standing of which space-time features of the source are
reflected by the various q-dependencies of the correlator.
However, their range of validity is limited by the fact that
strictly speaking the space-time variances determine only
the curvature of the correlator at q = 0:

〈(x̃i − βi t̃)(x̃j − βj t̃)〉 = −1

2

∂2C(q,K)

∂qi ∂qj

∣

∣

∣

∣

∣

q=0

. (2.11)

This agrees with the widths of the correlator if and only
if C(q,K) is Gaussian. We will see that resonance decays

can lead to appreciable non-Gaussian features in the cor-
relation function. If this is the case, Eqs. (2.7) and (2.10)
no longer provide quantitatively reliable expressions for
the observed half widths of the correlator. A detailed
discussion will follow in Sec. V.

III. RESONANCE DECAY CONTRIBUTIONS

We concentrate on charged pion (π+π+ or π−π−) cor-
relations. In the presence of resonance decays, the emis-
sion function is the sum of a direct term plus one addi-
tional term for each resonance decay channel with a pion
of the desired charge in the final state:

Sπ(x, p) = Sdir
π (x, p) +

∑

r 6=π

Sr→π(x, p) . (3.1)

Note that the sum is over decay channels, not just
over resonances. We compute the emission functions
Sr→π(x, p) for the decay pions from the direct emission
functions Sdir

r (X,P ) for the resonances taking into ac-
count the correct decay kinematics for 2- and 3-body de-
cays,

Sr→π(x, p) =
∑

±

∫

R

∫ ∞

0

dτ Γe−ΓτSdir
r

(

x− P±

M
τ,P±

)

.

(3.2)

From now on capital letters denote variables associated
with the parent resonance, while lowercase letters denote
pion variables. Here, Γ is the total decay width of the res-
onance, and

∑

±

∫

R
goes over the kinematically allowed

resonance momenta as described in Appendix A. Please
note that the momenta p and P± in this expression are in
general different, in contrast to the approximation used
in Eq. (1) of Ref. [18]. This is important for the following
discussion of the momentum dependence of the correla-
tor.

The complete two-particle correlation function is then
given by

C(q,K) = 1 +
|S̃dir
π (q,K)|2

|S̃π(0,K)|2

+2

∑

r 6=π Re[S̃dir
π (q,K)S̃r→π(q,K)]

|S̃π(0,K)|2

+
|
∑

r 6=π S̃r→π(q,K)|2

|S̃π(0,K)|2
, (3.3)

where the denominator includes all resonance contribu-
tions according to (3.1). The last term in the numerator
can be neglected if resonance production is small [29].
However, in ultrarelativistic heavy ion collisions a major
fraction of all final state pions stem from resonance de-
cays (see Fig. 1) and this “Grassberger approximation”
cannot be used.
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For later reference, we extend the expressions given
in Sec. II for the HBT parameters in terms of space-
time variances of the source to include resonance decay
contributions:

〈x̃µx̃ν〉(K) =

∑

r

∫

d4x x̃µx̃ν Sr→π(x,K)
∑

r

∫

d4xSr→π(x,K)
. (3.4)

Here the sum runs over all contributions, including the
direct pions. It is instructive to rewrite the average over
the emission function in the following form:

〈xν 〉(K) =
∑

r

fr(K) 〈xν〉r(K) ,

〈xµxν〉(K) =
∑

r

fr(K) 〈xµxν〉r(K) , (3.5)

where we introduced the single-particle fractions [8]

fr(K) =

∫

d4xSr→π(x,K)
∑

r

∫

d4xSr→π(x,K)
=

dN r
π/d

3K

dN tot
π /d3K

;

∑

r

fr(K) = 1 . (3.6)

These give the fraction of single pions with momentum
K resulting from decay channel r. We also defined the
average 〈. . .〉r with the effective pion emission function
arising from this particular channel:

〈. . .〉r(K) =

∫

d4x . . . Sr→π(x,K)
∫

d4xSr→π(x,K)
. (3.7)

The variances (3.4) can then be rewritten as

〈x̃µx̃ν〉 =
∑

r

fr 〈x̃µx̃ν〉r +
∑

r,r′

fr(δr,r′ − fr′)〈xµ〉r〈xν〉r′ .

(3.8)

The first term has a simple intuitive interpretation: each
resonance decay channel r contributes an effective emis-
sion function Sr→π. The full variance is calculated by
weighting the variance (homogeneity length) of the emis-
sion function from a particular decay channel r with the
fraction fr with which this channel contributes to the
single particle spectrum. However, the different effective
emission functions Sr→π(x, p) have in general different
saddle points; this gives rise to the second term in (3.8)
which somewhat spoils its intuitive interpretation.

Also, the full emission function (3.1) is a superposition
of sources with widely differing sizes since long-lived res-
onances contribute long exponential tails to the emission
function Sr→π [8,15]. It is easy to see that this leads to
non-Gaussian correlation functions: Consider a simple 1-
dimensional toy model where the emission function is a
sum of two Gaussian terms, one of width Rdir for direct
pions and one of width Rhalo for pions from a resonance,
with weights 1 − ǫ and ǫ, respectively:

Sπ(x,K) = Sdir
π (x,K) + Sr→π(x,K)

= (1 − ǫ) e−x
2/(2R2

dir) + ǫ e−x
2/(2R2

halo) . (3.9)

According to (3.3) the correlator is then a superposition
of three Gaussians which for Rhalo ≫ Rdir have very
different widths:

C(q,K) − 1 = (1 − ǫ)2 e−R
2
dirq

2

+ ǫ2 e−R
2
haloq

2

+2ǫ(1 − ǫ) e−(R2
dir+R

2
halo)q2/2 . (3.10)

Obviously, if ǫ is small, the rough structure of the cor-
relator will be determined by the large and broad direct
contribution. The two other contributions will, however,
modify its functional form as follows:
(i) If the resonance is shortlived such that Rhalo ≈ Rdir,
its effect on the correlator will be minor; its shape will
remain roughly Gaussian, with a width somewhere be-
tween 1/Rdir and 1/Rhalo, depending on the weight ǫ of
the resonance contribution.
(ii) If the resonance lifetime and thus Rhalo are extremely
large, the second and third term in (3.10) will be very nar-
row and, due to the finite two-track resolution of every
experiment, may escape detection; then the correlator
looks again Gaussian with a width 1/Rdir, but at q = 0
it will not approach the value 2, but 1+(1−ǫ)2 < 2. The
correlation appears to be incomplete, with a “correlation
strength” λ = (1 − fr)

2 = (1 − ǫ)2.
(iii) If the resonance lifetime is in between such that
Rhalo ≫ Rdir but 1/Rhalo is still large enough to be
experimentally resolved, all three Gaussians contribute,
and the full correlator deviates strongly from a single
Gaussian.
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FIG. 1. The resonance fractions fr(y, p⊥) according to
Eq. (3.6) for T = 150 MeV. Upper row: no transverse flow,
ηf = 0; lower row: ηf = 0.3. Left column: fr as a function
of transverse momentum at central rapidity; right column: fr

as function of rapidity at p⊥ = 0.
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In cases (ii) and (iii) the space-time variances calcu-
lated from Eq. (3.8) yield misleading or outright wrong
results for the width of the correlation function. They
give the curvature of the correlator at q = 0:

〈x̃2〉 = fdir〈x̃2〉dir + fhalo〈x̃2〉halo = (1 − ǫ)R2
dir + ǫR2

halo

= −1

2

∂2C(q)

∂q2

∣

∣

∣

∣

q=0

. (3.11)

In case (ii), for not too small values of ǫ, this is dom-
inated by the second term although the resonance con-
tribution is not even visible in the measured correlator!
On a quantitative level, the situation is not very much
better for case (iii) (see Sec. VI A1 for a more detailed
discussion).

However, if the resonances can be clearly separated
into two distinct classes, one with very short lifetimes
of order 1 fm/c, the other with very long lifetimes of
order 100 fm/c or longer, then space-time variances can
again provide an accurate measure for the width of the
correlation function. To achieve this, one must leave out
the long-lived resonances from the sum over r in (3.8), i.e.
one restricts the calculation of the space-time variances
to the “core” of the emission function from direct pions
and short-lived resonances [30,31]. Since the contribution
from long-lived resonances to the correlator cannot be
resolved experimentally (while they do contribute to the
single-particle spectra), one includes them via a reduced
correlation strength λ:

λ(K) =



1 −
∑

r=longlived

fr(K)





2

. (3.12)

The K-dependence of λ will be discussed in Sec. V.
The real problem comes from resonances with an inter-

mediate lifetime. They cause appreciable deviations from
a Gaussian behaviour for the correlator and cannot be re-
liably treated by the method of space-time variances. In
nature there is only one such resonance, the ω meson
with its 23.4 fm/c lifetime. At low K⊥ it contributes up
to 10% of all pions (fω(K = 0) ≈ 0.1), and their non-
Gaussian effects on the correlator can be clearly seen.
They will be discussed extensively in Sections VI,VII.

IV. A SIMPLE MODEL FOR THE EMISSION

FUNCTION

As discussed after Eq. (2.5), a completely model-
independent HBT analysis is not possible. In this Section
we define a simple model for the emission function in rel-
ativistic nuclear collisions which will be used in the rest
of the paper for quantitative studies. It has been used
extensively in the literature [9–13,23], and we present
a simple extension to include resonance production. It

implements the essential features expected from sources
created in nuclear collisions: It assumes local thermal-
ization prior to freeze-out and incorporates its collective
expansion in the longitudinal and transverse directions.
On the geometric side, the source has a finite size in the
spatial and temporal directions, i.e. it implements a fi-
nite, but non-zero duration for particle emission.

The emission function for particle species r is taken as

Sdir
r (x, P ) =

2Jr + 1

(2π)3
M⊥ cosh(Y − η)

× exp

(

−P · u(x) − µr
T

)

H(x) (4.1)

where

H(x) =
1

π(∆τ)
exp

(

− r2

2R2
− (η − η0)

2

2(∆η)2
− (τ − τ0)

2

2(∆τ)2

)

,

(4.2)

with proper time τ =
√
t2 − z2 and space-time rapidity

η = 1
2 log [(t+ z)/(t− z)]. The physical meaning of the

parameters has been explained in detail in Refs. [9–13,23]
to which we refer the reader. The only new ingredi-
ents are a factor 2Jr + 1 for the spin degeneracy (due
to charge identification in the experiment each isospin
state must be treated separately), and a chemical poten-
tial µr for each resonance r. This means that all particles
are assumed to freeze out with the same geometric char-
acteristics and the same collective flow, superimposed by
thermal motion with the same temperature. The pos-
sible consequences of particle-specific freeze-out [34,35]
will have to be discussed elsewhere.

For later reference we note that the function H(x) is
normalized to the total comoving 3-volume according to

∫

d4xH(x) = πr2rms · 2τ0ηrms , (4.3)

r2rms = 2R2 = x2
rms + y2

rms , ηrms = ∆η . (4.4)

Note that the rms widths in x- and y-direction are each
given by R. If the Gaussians in H(x) were replaced
by box functions [32,33], the equivalent box dimensions
(with the same rms radii) would be R̃ = 2R, η̃ =

√
3 ∆η.

For the flow profile we assume [12] Bjorken scaling in
the longitudinal direction, vl = z/t, and a linear trans-
verse flow rapidity profile [36]:

ηt(r) = ηf
r

R
. (4.5)

In spite of the longitudinal boost-invariance of the flow,
the source as a whole is not boost-invariant due to the
finite extension in η provided by the second Gaussian in
(4.1).

Inserting the parametrization (A5) for P the emission
function (4.1) becomes [13]
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Sdir
r (x, P ) =

2Jr + 1

(2π)3
MT cosh(Y − η) eµr/T H(x)

× exp

(

−MT

T
cosh(Y − η) cosh ηt(r)

+
PT
T

sinh ηt(r) cos(φ− Φ)

)

. (4.6)

The direct pion component Sdir
π (x, p) is obtained from

this expression by setting r = π, P = p, Jπ = 0, µπ = 0,
and Φ = 0 (see (A4)). This last condition reflects a
choice for the orientation of the coordinate system such
that the transverse momentum p⊥ of the decay pion lies
in the x − z plane. For the transverse momentum P⊥

of resonances which contribute pions with the same p⊥

as the directly emitted ones, in general a non-vanishing
azimuthal angle Φ is required, see Appendix A.

The chemical potentials µr will be fixed by the as-
sumption of chemical equilibrium at freeze-out. Then
baryon number and strangeness conservation in the fire-
ball demand the existence of two independent chemical
potentials µB and µS , with

Decay channel r M (MeV) Γ (MeV) J br→π−

ρ−
→ π−π0 770 150 1 1.0

ρ0
→ π−π+ 770 150 1 1.0

∆−
→ π−n 1232 115 3/2 1.0

∆0
→ π−p 1232 115 3/2 (1/3) × 1.0

∆̄+
→ π−n̄ 1232 115 3/2 (1/3) × 1.0

∆̄++
→ π−p̄ 1232 115 3/2 1.0

K∗0
→ π−K+ 892 50 1 (2/3) × 1.0

K∗−
→ π−K0 892 50 1 (2/3) × 1.0

Σ∗−
→ π−Λ(1116) 1385 36 1/2 0.88

Σ∗−
→ π−Σ0(1193) 1385 36 1/2 (1/2) × 0.12

Σ∗0
→ π−Σ+(1193) 1385 36 1/2 (1/2) × 0.12

Σ̄∗+
→ π−Λ̄(1116) 1385 36 1/2 0.88

Σ̄∗+
→ π−Σ̄0(1193) 1385 36 1/2 (1/2) × 0.12

Σ̄∗0
→ π−Σ̄−(1193) 1385 36 1/2 (1/2) × 0.12

ω → π−π+π0 782 8.43 1 0.89

η → π−π+π0 547 1.2 × 10−3 0 0.24

η′
→ π+π−η 958 0.2 0 0.44

K0
S → π+π− 498 ≈ 0 0 0.69

Σ−
→ π−n 1193 ≈ 0 1/2 1.0

Σ̄+
→ π−n̄ 1193 ≈ 0 1/2 1.0

Σ0
→ γΛ → pπ− 1193 ≈ 0 1/2 0.65
Λ → pπ− 1116 ≈ 0 1/2 0.65

TABLE I. The resonance decay contributions to π− pro-
duction considered in the present work. Where applicable the
factor in front of the branching ratio is the Clebsch-Gordon
coefficient for the particular decay channel.

µr = brµB + srµS , (4.7)

where br and sr are the baryon number and strangeness
of resonance r, respectively. The condition of overall
strangeness neutrality of the fireball allows to eliminate
µS in terms of T and µB [37].

Unless stated otherwise, the numerical calculations [44]
below are done with the set of source parameters T = 150
MeV, R = 5 fm, ∆η = 1.2, τ0 = 5 fm/c, ∆τ = 1 fm/c
and µB = µS = 0. We will work in the fireball c.m.
system and thus set η0 = 0.

The resonance channels included are listed in Table I.
The Σ(1193) and Λ(1116) are treated as one baryonic
resonance Y (1150) at an average mass of 1150 MeV. For
simplicity the decay cascade Σ0 → γΛ → pπ− is re-
placed by an effective two-particle decay Σ0 → pπ−, since
the photon in the Σ0-decay is known not to change the
shape of the hyperon spectrum [32]. The π− decay con-
tributions from the cascades η′ → ... +η → π− + ... and
Σ∗ → ...+ Y (1150) → π− + ... are taken into account by
enhanced branching ratios for the Y and η decay chan-
nels. These crude approximations are not problematic
because they concern quantitatively small contributions.
The cascade decays just mentioned affect the intercept
parameter on the level of a few percent; the K- depen-
dence of the HBT radius parameters remains essentially
unaffected. K0

L decays are neglected because the long
K0
L lifetime (cτ = 15.5 m) makes them invisible for most

detectors.

V. RESULTS FOR ONE- AND TWO-PARTICLE

SPECTRA

We now present a quantitative analysis of the one- and
two-particle spectra for the model described in Sec. IV.
Both types of spectra can be expressed in terms of the
four-dimensional Fourier transforms of the direct emis-
sion functions, S̃dir

r (q, P±), see Appendix A. We show in
Appendix B how the latter can be reduced analytically
to 2-dimensional integrals over r and η:

S̃dir
r (q, P±) =

(2Jr + 1)

π(2π)3/2
M⊥ τ0 e

µr
T

∫

dη (1 + iAq)

× cosh(η − Y ) eiAτ0 e−
1
2A

2(∆τ)2e
− η2

2(∆η)2

×
∫ ∞

0

r dr e−
r2

2R2 e−
M⊥

T
cosh(η−Y ) cosh ηt

×I0
(√

C − iD±
)

, (5.1)

where

C(r) =
P 2
⊥

T 2
sinh2 ηt(r) − r2 q2⊥ , (5.2a)

D±(r) = −2 r
P⊥

T
sinh ηt(r)
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× (qo cosΦ± + qs sin Φ±) , (5.2b)

A(η) =
(

q0 cosh η − ql sinh η
)

, (5.2c)

Aq(η) = A(η)
(∆τ)2

τ0
. (5.2d)

The Bessel function I0 arises from the φ-integration
while the terms containing A and Aq stem from the τ -
integration. Please note that the azimuthal rotation of
the resonance transverse momentum P⊥ relative to the
pion transverse momentum p⊥ (which defines the x-axis
of our coordinate system) enters only through the com-
bination in brackets in Eq. (5.2b); the latter stems from
the scalar product q ·P±, see Eq. (A19). This means that
the dependence on Φ± can be shifted from P±

⊥ to q⊥ by
a common rotation by the angle Φ±:

S̃dir
r

(

q0, qo, qs, ql;EP
, P⊥ cosΦ±, P⊥ sinΦ±, PL

)

=

S̃dir
r

(

q0, qo cosΦ± + qs sin Φ±, qs cosΦ±−
qo sinΦ±, ql;EP

, P⊥, 0, PL
) . (5.3)

Note that this identity does not depend on the model
for the emission function. It shows that the resonance
decay kinematics leads to a mixing of the sideward and
outward q-dependencies of the correlation functions that
would be obtained from the resonances if one could use
them for interferometry directly. This feature is lost in
the approximation leading to Eq. (2) in Ref. [18].

For the direct pion contribution, Φ± is to be set to zero
in (5.1), (5.3).

A. The resonance fractions fr(K)

The single particle momentum spectrum (2.1) is the
space-time integral over the emission function (3.1),

dNπ
π dy dm2

⊥

=

∫

d4xSπ(x, p) = S̃π(q = 0;m⊥, y). (5.4)

It is thus given by the Fourier transform (5.1) of the
emission function at zero relative momentum. From this
expression it is straightforward to evaluate the resonance
fractions fr(y,m⊥) of Eq. (3.6). For later referene they
are shown in Fig. 1. At central rapidity and small trans-
verse momentum in our model only about 40% of the
pions are emitted directly while more than half of the
pions stem from resonance decays. The direct fraction
increases rapidly with increasing transverse momentum,
but very slowly with increasing longitudinal momentum
resp. rapidity. In fact, most resonance fractions are
nearly independent of rapidity [8]. At large p⊥ the res-
onance contributions to the single particle spectrum die
out [17]. The largest resonance contribution comes from
the ρ meson, due to its relatively small mass and large
spin degeneray factor. The η, which is still lighter, has
no spin and a small branching ratio into pions. As can

be seen in the lower row of Fig. 1 the resonance fractions
are only weakly affected by transverse flow: at small p⊥
the direct fraction increases slightly while at large p⊥ the
tendency is opposite (see Sec. VB).

B. Single particle transverse momentum spectra

Integrating (5.4) over rapidity we obtain the single par-
ticle transverse momentum distribution:

dNπ
dm2

⊥

= π

∫

dy S̃dir
π (0; y,m⊥)

+
∑

r 6=π

π

∫

dy S̃r→π(0; y,m⊥) . (5.5)

The resonance decay contributions are given according
to Eqs. (A18) and (A19) by

S̃r→π(0; y,m⊥) = 2M

∫

R

Sdir
r (0;Y,M⊥) . (5.6)

The factor 2 results from the sum over Φ±, noting that
at q = 0 the integrand is independent of Φ± (see Ap-
pendix B). Writing Y = y+ v∆Y (see Eq. (A16)) where
∆Y is independent of y, the y-integration can be pulled
through the integrals

∫

R
over the decay phase space,

yielding [17]

dNπ
dm2

⊥

=
dNdir

π

dm2
⊥

+
∑

r 6=π

2Mr

∫

R

dNdir
r

dM2
⊥

. (5.7)

The transverse momentum spectra of the directly emitted
resonances r are given by expression (B4) [17,32]:

dNdir
r

dM2
⊥

=
2Jr + 1

4π2
(2πR2 · 2τ0∆η) eµr/T

×M⊥

∫ ∞

0

d

(

ξ2

2

)

e−ξ
2/2K1

(

M⊥

T cosh ηt(ξ)
)

× I0
(

P⊥

T sinh ηt(ξ)
)

, (5.8)

where we substituted ξ = r/R under the integral. Note
that the geometric parameters R, ∆η, τ0 of the source
enter only in the normalization of the spectrum through
the effective volume (4.3). Thus the shape of the (y-
integrated!) single-particle transverse momentum spec-
trum contains no information on the source geometry, in
agreement with general arguments presented e.g. in [12].
According to (5.7,5.8), the unnormalized transverse mo-
mentum dependence is fully determined by the rest mass
M , the temperature T (or T (ξ) if T were r-dependent),
and the transverse flow profile ηt(ξ) = ηf ξ

n.
For later reference we plot in Fig. 2 the pion trans-

verse mass spectrum for the two sets of source parame-
ters for which we compute two-particle correlations be-
low. All resonance decay contributions are shown sep-
arately. The only 3-body decays are those of the ω, η
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and η′ whose decay pions are seen to be particularly con-
centrated at small p⊥. (A similar low-p⊥ concentration
occurs for pions from K0

S decays, due to the small decay
phase space in this particular 2-body decay.) Compar-
ing the top panel (no transverse flow, ηf = 0) with the
bottom panel (ηf = 0.3) one observes the well-known
flattening of the transverse mass spectrum by transverse
radial flow [32–34,38]. The direct pions reflect essentially

an effective “blueshifted” temperature Teff = T
√

1+〈βt〉
1−〈βt〉

[38]. But the heavier resonances, in the region P⊥ < Mr,
are affected much more strongly by transverse flow since
at small P⊥ the flattening of the spectra by flow is pro-
portional to the particle rest mass [34,38].

therm.
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FIG. 2. The single pion transverse mass spectrum for

T = 150 MeV and µB = µS = 0. The overall normaliza-
tion is arbitrary, the relative normalizations of the various
resonance contributions are fixed by the assumption of ther-
mal and chemical equilibrium. Upper panel: no transverse
flow, ηf = 0; lower panel: ηf = 0.3.

Fig. 2b shows that this effect on the parent resonances
is also reflected in the spectra of the daughter pions, ex-
plaining the slight rise with ηf of the resonance fractions
at large m⊥. This flattening of the transverse mass spec-
tra by transverse flow, suggested in Refs. [38,32,33] as an
explanation for the observed features of the single particle
spectra from 28Si- and 32S-induced collisions at the AGS
and SPS, seems to have been confirmed by recent colli-
sion experiments with very heavy ions (Au+Au at the

AGS, Pb+Pb at the SPS, see contributions by Y. Ak-
iba, R. Lacasse, Nu Xu and P. Jones at the recent Quark
Matter ’96 conference [39]). One of the main goals of
two-particle interferometry is to obtain an independent
and more direct measure of the transverse expansion ve-
locity at freeze-out, to confirm this picture and further
discriminate against possible alternative explanations.
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FIG. 3. The two-particle correlator C(q,K) for π− pairs
with pair rapidity Y = 0 in the CMS. Each row of diagrams
corresponds to a different value for the transverse pair mo-
mentum K⊥ (K⊥ = 0, 200, 400, 600 and 800 MeV from top to
bottom). Left column: the correlator in the outward direction
at qs = ql = 0. Middle column: the correlator in the sideward
direction at qo = ql = 0. Right column: the correlator in the
longitudinal direction at qs = qo = 0. Source parameters as
in Sec. IV, the transverse flow ηf has been set to zero.
Here and in the following plots the different lines have
the following meaning: Thin solid line: thermal pi-
ons only. Long-dashed: including additionally ρ-decays.
Short-dashed: including additionally all other shortlived res-
onances (∆, K∗, Σ∗, see Table I). Dash-dotted: adding also
ω-decays. Thick solid line: adding also all longlived reso-
nances (η, η′, K0

S , Σ, Λ, see Table I).

C. Two-particle correlations

In Figs. 3 and 4 we plot the two-pion correlator
C(q,K) in the three Cartesian directions of q for zero
and non-zero transverse flow ηf , respectively. We use
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the letter Y to denote the rapidity of the pair, and K⊥

(M⊥) for its transverse momentum (transverse mass).
The pion pairs in Figs. 3 and 4 have pair rapidity Y = 0
in the CMS, and transverse momenta ranging from 0 to
800 MeV/c (top to bottom). The correlation functions
were calculated by numerically evaluating Eq. (3.3) for
the source parameters given in Sec. IV.
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FIG. 4. Same as Fig. 3, but for nonzero transverse flow
ηf = 0.3.

Within each plot, the different lines show the effect
of adding in Eq. (3.3) in the sum over decay channels
r successively more resonances (see Table I): first the
abundant ρ, then the other short-lived resonances, then
the ω with its intermediate lifetime, and finally all the
long-lived resonances. Comparing these plots row by row
gives one a feeling for the K⊥-dependence of the correla-
tion function and the various resonance contributions. In
the following two subsections we give a rough and general
discussion of the main features of the correlator without
and with transverse flow of the source, respectively, be-
fore proceeding to a quantitative analysis in Sec. VI.

1. No transverse flow (Fig. 3)

The direct thermal contribution leads to a correlation
function with a nearly Gaussian shape in all directions
qi, i = o, s, l, and for all pair momenta K⊥. As K⊥ in-

creases, the correlator becomes rapidly wider in the lon-
gitudinal direction while in the two transverse directions
the changes are hard to see and require a finer analy-
sis (Sec. VI). As more and more of the short-lived res-
onances are added, the width of the correlator becomes
smaller, again with a larger effect in the longitudinal than
in the two transverse directions. A much stronger effect
is caused by the ω-meson; now the narrowing of the cor-
relation function is also clearly seen in the transverse
directions, and the correlator becomes markedly non-
Gaussian. As the long-lived resonances are added, the
intercept λ of the correlator at q = 0 decreases below 1.
This is a matter of q-resolution (we stop at |q| = 1 MeV)
– the contribution from the long-lived resonances is en-
tirely concentrated in a δ-function like structure near the
origin, and with infinite resolution the correlator could
be seen to actually reach the value 1 at q = 0. This is, of
course, an extreme deviation from Gaussian behaviour.

Long-lived resonances thus lead to apparently incom-
plete correlations, λ < 1 [8,15]. This effect becomes even
stronger, if the correlator is projected onto one particu-
lar q-direction by averaging over a finite window in the
other directions where the correlator has already dropped
below λ [40].

As the pion pair momentum K⊥ increases, all reso-
nance effects on the width and strength of the correlator
are seen to decrease. This is a direct consequence of the
decreasing resonance fractions, see Fig. 1.

The above lifetime hierarchy of resonance effects can
be understood in terms of the following simple picture:

• Short-lived resonances, Γ > 30 MeV. In the rest
frame of the particle emitting fluid element these
resonances decay very close to their production
point, especially if they are heavy and have only
small thermal velocities. This means that the emis-
sion function Sr→π of the daughter pions has a very
similar spatial structure as that of the parent reso-
nance, Sdir

r , although at a shifted momentum and
shifted in time by the lifetime of the resonance. As
only Ro and Rl are sensitive to the lifetime of the
source, the shift in time affects the correlation func-
tion only in the outward and longitudinal direc-
tions. The stronger effect on Rl (which is obvious
from the right column in Fig. 3) is a consequence
of the boost-invariant longitudinal expansion of our
source: as the decay pions are emitted at a later
proper time τ , and since the longitudinal length of
homogeneity increases with τ because the longitu-
dinal velocity gradients decrease [10], the decay pi-
ons show a larger longitudinal homogeneity length
than the direct pions. – Since the Fourier transform
of the direct emission function is rather Gaussian
and the decay pions from short-lived resonances ap-
pear close to the emission point of the parent, they
maintain the Gaussian features of the correlator.
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• Long-lived resonances, Γ ≪ 1 MeV. These are the
η and η′, with lifetimes cτΓ ≈ 17.000 and 1000
fm, respectively, and the weak decays of K0

S and
the hyperons which on average propagate several
cm. (The decays of K0

L and charged kaons are
not included in our calculation because they are
reconstructed in most experiments.) Even with
thermal velocities these particles travel far outside
the direct emission region before decaying, generat-
ing a daughter pion emission function Sr→π with a
very large spatial support. The Fourier transform
S̃r→π(q,K) thus decays very rapidly for q 6= 0, giv-
ing no contribution in the experimentally accessi-
ble region q > 1 MeV. (This lower limit in q arises
from the finite two-track resolution in the experi-
ments.) The decay pions do, however, contribute
to the single particle spectrum S̃r→π(q = 0,K) in
the denominator and thus “dilute” the correlation.
In this way long-lived resonances decrease the cor-
relation strength λ without, however, affecting the
shape of the correlator where it can be measured.

• Moderately long-lived resonances, 1 MeV < Γ < 30
MeV. There is only one such resonance, the ω me-
son. It is not sufficiently long-lived to escape de-
tection in the correlator, and thus it does not af-
fect the intercept parameter λ. Its lifetime is, how-
ever, long enough to cause a long exponential tail
in Sω→π(x,K). This seriously distorts the shape of
the correlator and destroys its Gaussian form.

2. Non-zero transverse flow (Fig. 4)

The main difference between Figs. 3 and 4 is that the
effects from the short-lived resonances and the ω on the
shape of the correlator are weaker. The primary reason
for this behaviour is that for the class of models (4.6)
the transverse size Rt of the effective emission region for
heavy resonances shrinks for nonzero transverse flow. In
Gaussian saddle point approximation, this transverse size
Rt can be calculated from Sdir

r (x, P ) in (4.6) as

Rt =
R

√

1 + (M⊥/T )η2
f

. (5.9)

This is not accurate enough for quantitative studies [11]
but gives the correct tendency and right order of mag-
nitude. Going like η2

f this effect is small, but it tends
to increase the width of the correlator, counteracting the
basic tendency of resonance contributions to make the
correlator narrower. For ηf = 0.3 the two effects are
seen to more or less balance each other in the sideward
correlator, leaving practically no trace of the shortlived
resonances including the ω. A similar effect is seen in

the outward and longitudinal directions, but there the
dominant lifetime effect discussed above prevails.

Please note that none of the correlators shown in
Figs. 3,4 exhibits a “volcanic” (exponential or power law
rather than Gaussian) shape as seen for the longitudi-
nal correlators of Refs. [8]. We have not been able to
trace the origin of this discrepancy; it may be due to the
different source (hydrodynamics with freeze-out along a
sharp hypersurface) used in Refs. [8], but why this should
manifest itself in this way is not obvious. From general
arguments we would expect at small q a Gaussian be-
haviour with a curvature related to the longitudinal size
of the effective pion source from ω decays; the longitu-
dinal correlators in Refs. [8] seem to decay much more
steeply for small q. We have checked our results with
two independent programs, based on the formulae given
in the Appendices.

VI. EXTRACTING HBT-RADII FROM THE

CORRELATOR

Looking at Figs. 3 and 4 it is clear that more quanti-
tative methods are needed to characterize the shape of
the correlator. For an interpretation of the correlator
in terms of the space-time structure of the source rela-
tively small changes of its shape and its pair momentum
dependence play an important role. One would there-
fore like to describe the key features of C(q,K) by a
small number of fit parameters which are sensitive to
this space-time structure. The usual procedure is to per-
form a Gaussian fit with the functions (2.6) or (2.8). As
we will see this method runs into systematic problems if
the 2-particle correlator does not have a perfect Gaussian
shape, e.g. due to long-lived resonances. Not only do the
functions (2.6) or (2.8) fail to give a good fit, but by not
correctly accounting for the non-Gaussian features one
throws away important space-time information contained
in the resonance decay contributions to the correlator.

In this Section we discuss several different Gaussian
fitting procedures which clearly demonstrate these dif-
ficulties. The main reason for presenting this basically
flawed approach is (i) that it is the method mainly used
so far in the experimental analysis and (ii) that the dis-
cussion throws some light on how one should compare
HBT radius parameters extracted by different groups us-
ing different procedures. After having understood the
problems and the systematic uncertainties they generate
we will then suggest a more reliable approach in the next
Section which also accounts for non-Gaussian features in
a quantitative way.
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A. Two-dimensional Gaussian fits to the correlator

We start by discussing 2-dimensional fits to C(q,K)
with two parameters λi(K), Ri(K) (i = o, s, l). We ap-
proximate the numerical function in the directions qi as
follows:

C(qi, qk 6=i = 0;K) ≈ 1 + λi(K) e−R
2
i (K)qi

2

, i = o, s, l .

(6.1)

The optimal parameters λi(K) and Ri(K) are deter-
mined by minimizing the following expression:

n
∑

ν=1

(

lnC(qνi , qk 6=i = 0;K) − lnλi +R2
i (q

ν
i )

2
)2

= min .

(6.2)
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FIG. 5. The Cartesian HBT radii Ri, i = o, s, l and
their corresponding intercept parameters λi, extracted from
the correlator C(q,K) via 2-dimensional fits according to
Eq. (6.2). Shown are results at Y = 0 as function of K⊥ for
ηf = 0. Top row: sideward direction. Middle row: outward
direction. Bottom row: longitudinal direction. The different
lines indicate the effects of including various sets of resonances
as described in Fig. 3.

The label ν runs over a set of n equidistant values qνi
between 0 and 50 MeV for which the correlator C(qνi ,K)
was calculated numerically. Although the procedure (6.2)
is conceptually different from an experimental fitting pro-
cedure in that the function to be fitted is known exactly
and the resulting optimal fit parameters thus don’t have

statistical error bars, they can still vary systematically
depending on the selection of the fit points qνi and the
minimization function (6.2). These systematic variations
reflect the possible non-Gaussian features of the correla-
tor, but not in a way that allows to easily quantify them.
As long as the deviations from Gaussian bahavior are
small, the extracted Gaussian fit parameters Ri(K) and
λi(K) are expected to be useful for a simple characteri-
zation of the main features of the correlator.

1. No transverse flow

For the case ηf = 0 the results from independent 2-
dimensional fits to the correlator in the “side” (top),
“out” (middle), and “long” (bottom) directions are
shown in Fig. 5. The left column shows the Cartesian
HBT radii, the right column the associated intercept pa-
rameters resulting from the fit, both as functions of K⊥

at Y = 0.
The fitted intercept parameters follow roughly the be-

haviour expected from Eq. (3.12) and Fig. 1. Upon
closer inspection one sees, however, that also some of
the shorter-lived resonances, in particular the inclusion
of the ω, have a significant lowering effect on λ. These
effects are different in the three Cartesian directions and
strongest in the longitudinal direction, where even with-
out any resonance effects λ < 1 at small K⊥.

The deviations of the intercept parameter from unity
reflect non-Gaussian features of the correlator. For short-
lived resonances these are weak, except in the longitudi-
nal ql-direction where the correlator has been known to
show at smallK⊥ a somewhat steeper than Gaussian fall-
off due to the rapid boost-invariant longitudinal expan-
sion of the source [11], even in the absence of resonance
decays. The main non-Gaussian effects come from the ω
and, of course, from the long-lived resonance. The latter
affect, however, only λ and not the HBT radii extracted
from the Gaussian fit, while the ω also changes the radius
parameters.

The fit accomodates these non-Gaussian features by
lowering the intercept λ. As discussed in Sec. V C the
main origin of non-Gaussian effects due to resonances is
the tail in the time-distribution of the decay pions. Ac-
cording to Eqs. (2.7) this is expected to affect Ro and Rl,
but not Rs. Eq. (5.3) tells us, however, that the “out”
and “side”-behaviour of the parent resonance distribu-
tion gets mixed in the pair distribution of the daughter
pions, so some fraction of this effect propagates into the
side-correlator of the decay pions. On the other hand
there remains the fact that, compared to Rs, in Ro an ad-
ditional lifetime effect comes in through the term β2

⊥〈t̃2〉
in (2.7b); this contribution increases quadratically for
small values of K⊥, saturating above K⊥ = mπ where
β⊥ ≈ 1. This explains very nicely the initial drop and
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subsequent rise of λ in the outward direction, which is
particularly prominent for the ω contribution.

Let us now turn our attention to the HBT radii in the
left column of Fig. 5 and begin with a discussion of Rs.
Its size remains essentially unaffected by the short-lived
resonances with lifetimes of order 1 fm/c, but the ω af-
fects Rs. This effect dies out rapidly for increasing M⊥

due to the decreasing ω-fraction fω(K⊥, 0), but the re-
sulting M⊥-dependence of Rs complicates the extraction
of the transverse flow from it [11,13].

The origin of the effect has already been qualitatively
explained in Sec. VC and above by referring to Eq. (5.3).
A somewhat more quantitative estimate can be obtained
by studying the space-time variances of Sec. III, even
though the discussion presented there makes it clear
that this will provide only an upper estimate for the ω-
contribution to Rs. Considering only the direct pions and
those from ω-decays and calculating R2

s = 〈y2〉 according
to (3.8) we find

〈y2〉 = fdir〈y2〉dir + fω〈y2〉ω (6.3)

with

〈y2〉ω =

∫

d4x
∑

±

∫

R

∫∞

0
dτΓ e−τΓy2 Sdir

ω

(

x− P±

M τ, P±
)

∫

d4x
∑

±

∫

R

∫∞

0 dτΓ e−τΓSdir
ω

(

x− P±

M τ, P±
)

= R2 +

(

1

Γ2

)

fcorr , (6.4a)

fcorr = 2

∫

R

P 2
⊥

M2

∫

d4xSdir
ω (x, P±) sin2 Φ±

∫

R

∫

d4xSdir
ω (x, P±)

. (6.4b)

Using fdir + fω = 1 this yields

〈y2〉 = R2 + fcorr fω
1

Γ2
. (6.5)

This result can be explained as the effect of the ω prop-
agating in the y-direction before decaying or, more for-
mally, as the effect of the “out”-“side”-mixing in the de-
cay kinematics expressed by Eq. (5.3). Numerically, we
determined the factor fcorr ≈ 0.52 at K⊥ = 0 which
leads to fcorr · fω ≈ 0.1 at the same point. Putting this
together with the width of the ω-resonance, 1

Γ = 23.4 fm,

one obtains for the side variance
√

〈y2〉 = 8.9 fm.
This is obviously much larger than the 5.5 fm extracted

at K⊥ = 0, since the curvature (2.11) does not coin-
cide with the fitted width. For longer living resonances
this discrepancy will, of course, be even larger. Another
number to compare with is the half width Rhalf

s of the
correlator C(qs) at qo=ql=K=0, including all short-lived
resonances plus the ω. We find the hierarchy
√

〈y2〉 ≈ 8.9 fm > Rhalf
s ≈ 6.4 fm > Rs ≈ 5.5 fm . (6.6)

We conclude that estimates of resonance effects, based
on space-time variances like

√

〈y2〉, as e.g. done in [18],

are quantitatively unreliable. The half width Rhalf
s is

close to the result one would obtain from a Gaussian
fit to the correlator when the intercept λ is fixed to the
value of (3.12) (as e.g. done, albeit simultaneously in all
three q-directions, in Refs. [8,41]). The difference to our
procedure which lets λ float is significant, and since C
at q = 0 is not experimentally accessible, a comparison
of Rhalf

s with data [41] is clearly dangerous. The authors
of Refs. [8] also find that at low K⊥ resonance decays
can increase the longitudinal HBT radius Rl by up to a
factor 2; in a Gaussian fit with floating λ we never see
resonance induced increases in Rl by more than 1.5 fm.
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FIG. 6. The correlator C(qs) at qo=ql=K=0, taking into
account only direct pions and pions from ω decays. The upper
panel shows the three contributions according to Eq. (3.3): di-
rect-direct pairs (dashed), direct-direct + direct-ω (dotted),
and all contributions (including the ω − ω term where both
pions come from ω decays) (solid line). The lower panel com-
pares the same solid line to different Gaussians whose radius
parameters correspond to the curvature at qs = 0 (dotted
line), the half width of C(qs) (dash-dotted line), and the op-
timal Gaussian fit according to Eq. (6.2) (dashed line).

We have compared the Gaussians corresponding to the
numbers given in Eq. (6.6) with the true “side”-correlator
in the lower panel of Fig. 6. In the upper panel we show
the three contributions to the correlator (see (3.3) and
(3.10)) coming from pairs of two directly emitted pions
(dashed line), from pairs of one direct and one ω decay
pion (difference between dotted and dashed lines), and
from pairs where both pions come from ω decays (differ-
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ence between solid and dotted lines). While it is obvious
that the ω contributions are concentrated at lower qs-
values than the direct one, the tail from the mixed direct-
ω contribution is still appreciable outside the half-point
of the direct term near qs = 30 MeV. It therefore ap-
pears impossible to cleanly separate the correlation func-
tion into “core” and “halo” contributions with different
q-support [15]. In particular, the recent suggestion by
Csörgő [31] to extract the “core” radius by performing
a Gaussian fit to the qs-tail of the correlator, excluding
the range qs < qcut where qcut ∼ 30 MeV, is likely to run
into systematic problems.

We now turn to Ro. At K⊥ = 0 the two trans-
verse radius parameters Rs and Ro are equal by symme-
try [23], and all above considerations carry over to the
“out”-direction. At non-zero K⊥, Ro receives an addi-
tional contribution from the source lifetime as indicated
by Eq. (2.7b). Although for the ω the use of this ex-
pression is no longer quantitatively reliable, it gives the
correct tendency. Short-lived resonances do not destroy
the Gaussian shape of the out-correlator, and for them
Eq. (2.7b) (with Eq. (3.8)) can be used without restric-
tions. It is obvious that even the short-lived resonances
contribute through their lifetime to the term β2

⊥〈t̃2〉 in
(2.7b), strengthening the rise of Ro in Fig. 5 at small
K⊥.

The strongest resonance effect is seen for Rl, which is
affected even by the short-lived resonances. These effects
disappear for large K⊥ due to the decreasing resonance
fractions fr, but at small K⊥ they are significant. Due to
the existence of (weak) non-Gaussian features already in
the absence of resonances the space-time variances are of
limited use for a quantitative discussion of the effects, and
we leave the reader with the numerical results shown in
Fig. 5. A qualitative interpretation was given in Sec. VC.

2. Non-zero transverse flow

In Fig. 7 we show the parameters λi, Ri obtained from
the 2-dimensional fit (6.1), (6.2) for the case of non-zero
transverse expansion with ηf = 0.3. Comparing with
Fig. 5 one sees that the effect of the resonances on the
radius on the HBT radius parameters are weaker, and
that correspondingly the non-Gaussian effects caused by
the short-lived resonances and the ω (which lead to devi-
ations of the intercept parameter λ from unity) are less
pronounced. In fact, the only remaining effects of these
resonances on the HBT radii come from the terms ∼ 〈t̃2〉
in Ro and Rl (see (2.7)) and are due to the additional
contribution to the particle emission duration from the
resonance lifetimes. The geometrical effect of resonance
propagation away from the direct source, described by
the second term in (6.5), has disappeared, even for the ω.
The reason was already discussed in Sec. VC, Eq. (5.9):

due to transverse flow the transverse size of the emis-
sion region for heavy resonances is smaller than that of
the direct pions, and since they don’t live very long they
usually don’t make it outside the source of direct pions
before decaying. Thus they don’t lead to an increase of
the spatial source size.
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FIG. 7. Same as Fig. 5, but for non-zero transverse flow
ηf = 0.3.

As a consequence, the decrease of Rs with increasing
K⊥, which is characteristic for transverse collective flow
of the source [11,13], is no longer modified by the pions
from ω decays. This is, of course, the ideal situation
one might hope for in order to extract quantitative dy-
namical information from HBT data. Unfortunately, the
problem remains that, if the measurement finds a (not
too strong) M⊥-dependence of Rs, it could still be due
to either weak transverse flow without resonance contam-
inations as in Fig. 7, or to ω-decay contributions in the
absence of transverse flow as in Fig. 5. (Other mecha-
nisms like transverse temperature gradients might also
create an M⊥-dependence [9,10].) We must find a more
quantitative analysis tool which allows us to tell whether
the M⊥-dependence of Rs is associated with ω-decays or
not.

B. Five-dimensional Cartesian Gaussian fits to the

correlator

Before approaching this task in the next Section, we
will now also discuss some generic features of multi-
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dimensional Gaussian fits to the exact correlator where
all HBT parameters and the correlation strength are de-
termined simultaneously. This is clearly desirable in or-
der to avoid the problem of having three different cor-
relation strengths in the three Cartesian directions, as
happens when the three radii Rs, Ro, and Rl are deter-
mined by separate 2-dimensional fits according to (6.1),
because such a result is clearly unphysical. It is also nec-
essary for the determination of the cross-term Rol and
for a fit with the YKP parametrization (2.8).
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cept λ, obtained from the 5-dimensional fit (6.7) to C(q,K),
as functions of K⊥ at Y = 0. Rol is not shown since at Y = 0
it vanishes due to symmetry. Left column: no transverse flow,
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In this Subsection we extract the Cartesian parameters
Ro, Rs, Rl, Rol and λ from a 5-dimensional fit which
minimizes the expression

n
∑

ν=1

[

lnC(qν ,K) − lnλ+R2
o (qνo )

2 +R2
s (qνs )

2 +R2
l (qνl )

2

+2R2
ol q

ν
o q

ν
l

)2

= min. (6.7)

The label ν again runs over n fit points qν which were
chosen to lie at equal distances between 0 and 50 MeV
along the three Cartesian q-axes and along the two diag-
onals (qs = 0, qo = ql) and (qs = 0, qo = −ql). This
is, of course, different from a typical experimental q-
distribution. They were selected to economize in the
number of fit points where the exact correlator had to
be computed.

The results of the fit (6.7) are shown in Fig. 8, again
for ηf = 0 and ηf = 0.3 at midrapidity Y = 0. Let us
first look at the incercept parameter λ. Comparing with
Figs. 5, 7 we see that the λ-value from the 5-dimensional
fit lies somewhere between the three different values ob-
tained in the 2-dimensional fits. As before it reflects
the deviations of the correlator from a Gaussian. Since
such deviations exist in the ql-direction even without res-
onances, due to strong longitudinal expansion, λ slightly
deviates from 1 even in the absence of resonance decays.

The need for the fit to compromise on a unique inter-
cept parameter affects the optimum values for the HBT
radius parameters. For a fixed correlation function, a
decrease of λ leads automatically also to a smaller Gaus-
sian radius as found by the fit. Since the compromise
value for λ lies above the value λl, but below the values
λs and λo from the 2-d fits, Rl increases and Rs, Ro de-
crease in the 5-d fit relative to the 2-d fit values. (This
effect is hardly visible if resonance decays are switched
off but becomes stronger as the resonance contributions
(with their non-Gaussian effects) are added.) The net
result is that even in the absence of transverse flow now
the resonance effects on Rs and on its M⊥-dependence
appear quite weak. Even the resonance contribution to
the lifetime effect in Ro (the quadratic rise at small K⊥)
becomes less pronounced.

For completeness we show in Fig. 9 also results at for-
ward pair rapidity Y = 1.5. In this case the fit gives,
of course, a non-vanishing cross-term Rol with the ex-
pected K⊥-behaviour [42]. It is affected by resonances
essentially at the same level as Ro. The only other qual-
itative difference is the much smaller value of Rl relative
to Y = 0; this is an effect of Lorentz contraction.

It must be stressed that the differences between this
Subsection and the previous one are purely due to fit
systematics. Depending on how the exact correlator is
fitted to a Gaussian the extracted Gaussian radii show
significant differences. Since in the experiments the in-
tercept parameter cannot be directly measured and must
be fitted simultaneously with the HBT radii, we adopted
the same procedure and let λ float in the fit. Schlei [8,41],
on the other hand, in his Gaussian fits has always fixed λ
at the value given by Eq. (3.12). In the presence of non-
Gaussian effects due to resonance decays our fits give
smaller λ’s and, therefore, smaller HBT radii than his
fit. This explains why the resonance effects on the trans-
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verse radii and their K⊥-dependence were found to be
much stronger in Refs. [8,41] than in our work here. Ac-
cording to the second inequality in (6.6) the difference in
Rs is about 1 fm, in good agreement with his compared
to our results.
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C. Five-dimensional Gaussian YKP fits to the

correlator

The extraction of the Yano-Koonin velocity from a fit
according to Eq. (2.8) is a non-linear problem. To main-
tain the simplicity of a least-square fit with linear fit pa-
rameters we have reformulated the YKP fit problem as
follows: We rewrite (2.8) in the form

C(K,q) = 1 + λ
YKP

(K) exp
[

−R2
⊥(K) q2⊥ −R2

33(K)q2l

−R2
00(K)(q0)2 + 2R2

03(K)q0ql
]

, (6.8)

with

v =
1

2D

(

1 −
√

1 − (4D2)2
)

, (6.9a)

R2
0 =

R2
00 − v2R2

33

1 + v2
, (6.9b)

R2
‖ =

R2
33 − v2R2

00

1 + v2
, (6.9c)

D =
R2

03

R2
00 +R2

33

. (6.9d)

We then proceed as with the Cartesian parametrization
in Sec. VI B, using the same set of fit points as before, but
expressing them through their components q⊥, ql, and
q0, in order to determine λ

YKP
, R⊥, R33, R00, and R03.

Finally we solve Eqs. (6.9) for the YKP parameters.
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However, the one-to-one correspondence between the
YKP and Cartesian radius parameters does not imply
that in a fit to experimental data both sets of fit param-
eters can be determined with similar accuracy. At mid
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rapidity, for instance, where q0 = β⊥ qo, the YKP fit be-
comes for small transverse pair momentum increasingly
insensitive to R0, since q0 → 0 for β⊥ → 0. As a result,
in the space of YKP fit parameters the confidence region
for one standard deviation is very elongated in R0. The
actual fit value of R0 thus develops a strong sensitivity
to relatively small systematic deviations of the correla-
tor from a Gaussian shape. Since the procedure (6.7)
adopted here does not allow to associate errors to the
extracted fit values, we present in Figs. 10 and 11 the re-
sults only for sufficiently large values of K⊥ where such
systematic effects were found to be small.

For Y = 0 (βl = 0, Fig. 10) the systematic uncertainty
at small values of K⊥ (β⊥) affects only R0, according
to the arguments presented above. For K⊥ < 100 MeV,
we found that the R0 value extracted from the Gaussian
fit develops a strong dependence on the choice of the fit
points qν while this problem disappears at larger values
of K⊥. For Y = 1.5, (βl 6= 0, Fig. 11), similar systematic
uncertainties at small K⊥ affect also R‖ and YYK . Ac-
cordingly, the corresponding curves in Fig. 11 have been
cut off at small K⊥.

The intercept parameters λ
YKP

extracted from the
fit to (6.8) essentially coincide with those from the 5-
dimensional Cartesian fit. This is expected since in both
fits the same set of fit points was used. Also, the results
for R⊥ compare very well with Rs in the Cartesian fit.
For a Gaussian correlator the formalism of space-time
variances says R2

⊥ = R2
s = 〈y2〉. The equality R⊥ = Rs

remains essentially unaffected by the non-Gaussian fea-
tures of the correlator in the presence of resonance de-
cays.

The longitudinal YKP parameter R‖ is affected by res-
onance decays roughly in the same way as Rl in the
Cartesian fit at Y = 0. This is expected because at
Y = 0 the two parameters are again identical on the level
of space-time variances, see Eqs. (2.7c), (2.10b). There
is no drastic change for R‖ as one goes from Y = 0 to
Y = 1.5: All values (with and without resonances) de-
crease somewhat, because one approaches the forward
end of the source, and the longitudinal homogeneity re-
gion thus shrinks a bit.

The most significant resonance contribution is seen in
the lifetime parameter R0. This agrees with our argu-
ments that the dominant effect from resonances on the
correlation function arises from their finite lifetime.

At Y = 0 the Yano-Koonin velocity v vanishes [12,13].
This is reproduced by the fit. At forward rapidity v is
non-zero. In the fourth row of Fig. 11 we plot the Yano-

Koonin rapidity Y
YK

= 1
2 ln

(

1+v
1−v

)

as a function of the

transverse pair momentum. For longitudinally boost in-
variant sources, the YK rapidity is known to coincide
with the pair rapidity, Y

YK
(K⊥, Y ) = Y . For the class

of models of Sec. IV with longitudinally boost-invariant
flow previous studies without resonance decay contri-

butions gave a linear relation between the two quanti-
ties, YYK(K⊥, Y ) = c(K⊥)Y . The Y -dependence YYK

provides direct experimental access to the longitudinal
expansion of the source. For thermalized models the
proportionality constant c(K⊥) slowly approaches unity
from below as K⊥ increases [13]. This is clearly seen in
Fig. 11 which also shows that resonance decay contribu-
tions have a negligible influence on this relation.
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FIG. 11. Same as Fig. 10, but for forward rapidity Y = 1.5.
The additional fourth row now shows the Yano-Koonin rapid-
ity at function of K⊥.

VII. q-VARIANCES OF THE CORRELATOR

We have seen that resonances, in particular the ω
with its intermediate lifetime, create appreciable non-
Gaussian effects in the two-pion correlator, and that
these deviations from a Gaussian shape can thus contain
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additional information about the space-time distribution
of the source and its physical origin. They also have neg-
ative effects on the extraction of HBT radius parameters
from Gaussian fits and affect their K⊥-dependence in a
way which, within the framework of Gaussian fits, is dif-
ficult to quantify and to control systematically.

In this Section we therefore study an alternative ap-
proach. We suggest to extract the HBT radius parame-
ters and quantify the deviations from Gaussian behaviour
by studying the normalized second and fourth order q-
moments of the correlator C(q,K). We first develop the
necessary formalism and then apply it to the correlation
functions calculated from our class of source models.

A. General formalism

According to Sec. II, the most general Gaussian ansatz
for the correlator is

C(q,K) = 1 + λ(K) exp



−
3
∑

i,j=1

qiDij(K) qj



 , (7.1)

where the qi are the three independent relative momen-
tum components obtained after resolving the on-shell
constraint q0 = β · q. For such a Gaussian correlator,
the HBT parameters Dij(K) can be obtained by either
fitting the various widths of the correlator as done in
Sec. VI, or by computing the integrals

〈〈qi qj〉〉 ≡
∫

d3q qi qj [C(q,K) − 1]
∫

d3q [C(q,K) − 1]
=

1

2

(

D−1(K)
)

ij

(7.2)

and inverting the resulting matrix of second order q-
moments.

For a non-Gaussian correlator we may define the HBT
radius parameters in terms of these “q-variances”: hav-
ing determined the matrix D(K) by inverting the matrix
〈〈q ⊗ q〉〉(K) of q-variances, we define





R2
s R2

os R2
ls

R2
os R2

o R2
ol

R2
ls R2

ol R2
l



 ≡





Dss Dos Dls

Dos Doo Dol

Dls Dol Dll



 (7.3)

when qs, qo, ql are used as independent coordinates, and





R2
⊥ 0 0
0 R2

33 −R2
03

0 −R2
03 R2

00



 ≡





D⊥⊥ 0 0
0 D33 D03

0 D03 D00



 (7.4)

if one uses instead q⊥, ql, q
0 as independent variables.

Eq. (7.3) corresponds to the Cartesian parametrization
(2.6), generalized to systems without azimuthal symme-
try by allowing for non-vanishing “side-out” and “side-
long” cross terms. Eq. (7.4) corresponds to the YKP

parametrization (2.8) which applies only to azimuthally
symmetric systems, and the zeroes in the matrices on the
left and right hand side reflect this symmetry.

Similarly, the intercept parameter can be defined in
terms of the q-variances and the zeroth order q-moment
as

λ(K) = π−3/2
√

detD(K)

∫

d3q [C(q,K) − 1] , (7.5)

which reproduces the correct value for Gaussian correla-
tors of type (7.1).

The deviations from Gaussian behaviour in the correla-
tor are then related to higher order q-moments. A general
discussion, including their derivation from a generating
functional from which the full correlator can be recon-
structed, is given in Ref. [43]. Since C(q,K) is symmet-
ric with respect to interchange of the particle momenta
p1 and p2 and therefore even under q → −q, all odd
q-moments vanish. The first non-Gaussian contributions
thus show up in the fourth order moments.

Application of the method of q-moments thus generally
requires at least an inversion of the matrix (7.2) for the
determination of the HBT radius parameters and a dis-
cussion of the 4-dimensional tensor of fourth order mo-
ments for the non-Gaussian aspects. A complete such
analysis in three-dimensional q-space will be postponed
to a future publication. Here we will perform a unidirec-
tional analysis, where these technical complications do
not arise, and compare it with the unidirectional Gaus-
sian fits of Sec. VI A.

We thus consider the correlator along one of the three
axes qi (i = s, o, l or i =⊥, l, 0) which we denote by C̃(qi),
suppressing for simplicity the K-dependence:

C̃(qi) ≡ C(qi, qj 6=i = 0,K) . (7.6)

The HBT radius parameter in direction i and the corre-
sponding intercept parameter are then defined as

R2
i =

1

2 〈〈q2i 〉〉
, (7.7a)

〈〈q2i 〉〉 =

∫

dqi q
2
i [C̃(qi) − 1]

∫

dqi [C̃(qi) − 1]
, (7.7b)

λi = (Ri/
√
π)

∫

dqi [C̃(qi) − 1] . (7.7c)

To extract the moments 〈〈qni 〉〉 from data one replaces
(7.7b) by a ratio of sums over bins in the qi-direction.
The higher the order n of the q-moment, the more sensi-
tive are the extracted values to statistical and systematic
uncertainties in the region of large qi. First investiga-
tions with event samples generated by the VENUS event
generator indicate that the current precision of the data
in the Pb-beam experiments at the CERN SPS permits
to determine the second and fourth order q-moments.
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Accordingly, we restrict our discussion of non-Gaussian
features to the “kurtosis”

∆i =
〈〈q4i 〉〉

3 〈〈q2i 〉〉2
− 1 . (7.8)

In the following Sec. VII B we will study the K⊥-
dependence of the HBT radius parameters, the intercept
and the kurtosis as defined by Eqs. (7.7) and (7.8).

B. Unidirectional results for the q-moments

In this Subsection we present a numerical analysis of
the correlation functions computed in Sec. V in terms
of their q-moments along the three Cartesian directions,
and give a comparison with the unidirectional Gaussian
fits presented in Sec. VI A.

Fig. 12 shows the HBT radii (7.7a) and the kurtosis
(7.8) along the “side”-, “out’-, and “long”-axes (from top
to bottom). The left and right column of plots corre-
spond to zero and non-zero transverse flow of the source,
respectively. In each panel we plot as the upper set of
curves the HBT radius parameter Ri in fm, with differ-
ent line symbols denoting the effects of including various
sets of resonances as before. They should be compared
with the lines shown in the left columns of Figs. 5 and
7, respectively. The lower set of lines (clustered around
values near 0) denote the corresponding kurtosis ∆i in di-
mensionless units. These contain the lowest order infor-
mation on the non-Gaussian features of the numerically
computed correlation function.

The comparison of the HBT radius parameters defined
via the q-variances of the correlator with those from the
Gaussian fit (6.2) shows a remarkable agreement. As
stressed above, in the presence of non-Gaussian features
in the correlator, the only well-defined definition of the
HBT radii is provided by the q-variances (7.7a), while the
Gaussian fit results have possibly severe systematic un-
certainties related to the details of the fit procedure. The
agreement between the corresponding curves in Figs. 5,
7, and 12 indicates that we were “lucky” with our choice
of fit prescription in Sec. VI A. An essential reason for
the good agreement was our decision to let the inter-
cept parameter λ float in Eq. (6.2), i.e. to perform a 2-
dimensional rather than a 1-dimensional fit as in Refs. [8].
The discrepancy between the HBT radii shown in those
papers and those shown in Fig. 12 thus simply reflect the
systematic uncertainties of extracting a Gaussian width
parameter from a non-Gaussian correlator. In view of
these uncertainties, the existence of a clear-cut definition
via the q-variance of the correlator becomes crucial.

The space-time interpretation of the HBT radius pa-
rameters has so far been largely based on their relations
(2.7), (2.10) with the space-time variances of the source
which are only true for Gaussian correlators. The agree-
ment between the HBT radii from q-variances and from

(appropriate) Gaussian fits suggests that these relations
continue to be useful for the space-time interpretation of
the correlation functions.

Unidirectional q-variances,  Y = 0
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FIG. 12. 1-dimensional q-variances according to Sec. VIIA.
The plots show for the three Cartesian directions i = s, o, l
the radius parameters Ri(K⊥) defined by Eq. (7.7a) (upper
set of curves in each panel) and the kurtosis ∆i(K⊥) defined
by Eq. (7.7a) (lower set of curves in each panel). The radii
are given in fm, the kurtosis in dimensionless units on the
same scale. Left column: no transverse flow, ηf = 0. Right
column: ηf = 0.3. The pion pairs have rapidity Y = 0 in the
CMS.

In view of the above agreement between the two types
of HBT radius parameters, and of our discussion of the
interplay between the values of λi and Ri in various types
of Gaussian fits to a given correlation function, it is not
surprising that the intercept parameters extracted from
Eq. (7.7c) also agree very well with the ones extracted
from the unidirectional Gaussian fits and shown in the
right columns of Figs. 5 and 7. They are therefore not
presented again.

The interesting new information is, of course, con-
tained in the kurtosis ∆i and theirK⊥-dependence shown
in Fig. 12. In the side direction the appearance of a non-
vanishing (positive) kurtosis is clearly linked to the influ-
ence of the ω decays on the correlation function and to its
visibility in the HBT radius parameter Rs. This implies
that the question whether or not a given K⊥-dependence
of Rs is caused by resonance decays or not can be eas-
ily answered by checking the kurtosis of the correlation
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function. If the kurtosis vanishes (or is slightly negative),
it is not the ω which causes the K⊥-dependence. At least
for the model studied here, the kurtosis provides thus the
cleanest distinction between scenarios with and without
transverse flow. Its value and K⊥-dependence are thus
very important ingredients for the interpretation of 2-
particle correlations.

The situation is slightly more complicated in the out-
ward direction: as long as the source does not expand
transversally (ηf = 0), the visibility of resonance decay
effects in Ro is clearly linked to a non-zero positive kurto-
sis of the correlator, and vice versa. For non-zero trans-
verse flow, however, the outward correlator begins to de-
velop small deviations from a Gaussian [11] even without
resonance decays; these show up in a negative value for
the kurtosis. This effect increases for larger transverse
pair momenta K⊥.

The kurtosis generated by collective expansion is par-
ticularly prominent in the longitudinal direction where
flow-induced non-Gaussian features they have been no-
ticed first [11]. The bottom row of Fig. 12 clearly shows
the interplay of non-Gaussian features induced by res-
onance decays (leading to a positive kurtosis) and lon-
gitudinal expansion flow (causing a negative kurtosis).
At small K⊥ the resonance contributions dominate; at
large K⊥ the resonances loose importance while the flow-
induced kurtosis becomes stronger, leading to overall neg-
ative values of the kurtosis.

VIII. CONCLUSIONS

Within a broad class of model emission functions for
locally thermalized and collectively expanding sources we
have presented a comprehensive study of resonance de-
cay effects on two-pion Bose-Einstein correlations. We
have found that, with regard to their influence on the
correlation function, the resonances can be subdivided
into three classes:

• Long-lived resonances with width < 1 MeV can not
be resolved in the correlation measurement; they
reduce the correlation strength λ but otherwise do
not influence the shape of the correlation function
in the region where it can be measured.

• Short-lived resonances with width > 30 MeV: they
decay into pions close to their production point and
thus do not change the spatial width of the pion
emission function. Hence they do not affect the
sideward correlator whose width is defined by the
transverse spatial size of the source. In the outward
and longitudinal correlator and in the lifetime pa-
rameter R0 of the YKP parametrization, which are
all in one way or other sensitive to the lifetime of
the source, they contribute via the additional time

duration of pion emission due to their own lifetime.
These contributions are small and on the order of
the resonance lifetime.

• The ω meson. With its width of about 8 MeV
it is not sufficiently long-lived to escape detection
in the correlator, but also not sufficiently short-
lived to not change the spatial width of the emission
function. As a consequence it can lead to severe
non-Gaussian distortions of the correlator.

These latter distortions cause serious problems. We
have shown in Sec. VI that both the method of extract-
ing width parameters from the correlator via Gaussian
fits and the calculation of these parameters in terms of
space-time variances can lead to quantitatively unreliable
results. The systematic uncertainties of Gaussian fits to
non-Gaussian correlators were identified in Sec. VI (c.f.
the discussion following Eq. (6.6)) as the primary reason
for previous claims of much larger resonance effects on
the two-pion HBT radii than found by us. To remove the
ambiguities associated with non-Gaussian features of the
correlator we have introduced in Sec. VII an alternative
definition of the HBT size parameters and of the inter-
cept parameter λ in terms of q-moments of the correlator
which does not rely on the assumption of a Gaussian cor-
relator. For sufficiently high statistics data, HBT radius
parameters determined in this way are free of systematic
uncertainties. For the examples studied here, they show
a much weaker influence from resonance decays than we
had expected on the basis of previous work [8].

The normalized fourth order q-cumulant (kurtosis)
serves as a quantitative lowest-order measure for the non-
Gaussian features of the correlator. It is sensitive to both
resonance decays and flow which (at least for the models
studied here) contribute, however, with different signs.
The kurtosis thus provides the cleanest signal to dis-
tinguish between scenarios with and without transverse
flow.

Our detailed numerical model study of q-moments has
shown that resonance decays which modify the HBT ra-
dius parameters (defined via the q-variance of the corre-
lator) also lead to a positive kurtosis. It can be related
to the long non-Gaussian tails in the source distribution
generated by the decay pions. Collective expansion, on
the other hand, generates a negative kurtosis because it
tends (in our model) to let the source at its edges de-
cay more steeply than a Gaussian. We see practically no
flow effects on the kurtosis in the sideward direction, a
weak effect due to transverse expansion in the outward
direction, and a somewhat larger effect due to the strong
longitudinal expansion in the longitudinal direction. In
the transverse direction resonance effects on the HBT ra-
dius Rs can thus be directly correlated with a non-zero,
positive kurtosis. The existence or not of a non-vanishing
kurtosis ∆s and its K⊥-dependence can thus be used to
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assess the amount of contamination in Rs from ω-decays
and to separate these effects from transverse flow.
q-moments thus provide significantly improved infor-

mation on the shape of the correlation function in terms
of a still small number of relevant parameters λi, Ri,∆i,
whose size and momentum dependence lends itself to an
interpretation in terms of the geometric and dynamic
space-time structure of the emitting source. They are
thus expected to further adapt the HBT method to the
increased demand for accuracy in view of the complicated
nature of the dynamical sources created in relativistic
heavy ion collisions and of the drastically improved qual-
ity of recent correlation measurements. The new method
has been demonstrated to work very well in theory. In
view of the new high precision data from the Pb-beam
at the CERN SPS, it appears to be experimentally fea-
sible. It will be interesting to see how far the additional,
higher order HBT observables improve our picture of the
spatio-temporal evolution of heavy ion collisions.
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APPENDIX A: THE EMISSION FUNCTION FOR

RESONANCE DECAY PIONS

Here, we give details of how to compute the emission
function Sr→π(x, p) for resonance decay pions from a de-
cay channel r. We follow the treatment in [16,17] with
some notational improvements. The resonance r is emit-
ted with momentum P at space-time point Xµ and de-
cays after a proper time τ at xµ = Xµ+ Pµ

M τ into a pion
of momentum p and (n− 1) other decay products:

r −→ π + c2 + c3 + ...+ cn . (A1)

The decay rate at proper time τ is Γe−Γτ where Γ is the
total decay width of r. Assuming unpolarized resonances
with isotropic decay in their rest frame, Sr→π(x, p) is
given in terms of the direct emission function Sdir

r (X,P )
for the resonance r by

Sr→π(x; p) = M

∫ s+

s−

ds g(s)

∫

d3P

E
P

δ(p · P − E∗M)

×
∫

d4X

∫

dτ Γe−Γτ

× δ(4)
[

x−
(

X +
P

M
τ

)]

Sdir
r (X,P ) . (A2)

Variables with a star denote their values in the resonance
rest frame, all other variables are given in the fixed mea-

surement frame. Here s = (
∑n

i=2 pi)
2

is the squared
invariant mass of the (n − 1) unobserved decay prod-

ucts in (A1). It can vary between s− = (
∑n
i=2mi)

2
and

s+ = (M − m)2. g(s) is the decay phase space for the
(n− 1) unobserved particles. E∗ is the energy of the ob-
served decay pion in the resonance rest frame and is a
function of s only:

E∗ =

√

m2 + p∗2 ,

p∗ =

√

[(M +m)2 − s][(M −m)2 − s]

2M
. (A3)

We choose for the observer frame a Cartesian coordi-
nate system in which the transverse momentum p⊥ of
the decay pion has only an x (“out”) and no y (“side”)
component:

pµ = (E, px, py, pL
) = (m⊥ cosh y, p⊥, 0, m⊥ sinh y) .

(A4)

In this coordinate system the resonance 4-momentum P
is parametrized by

Pµ = (E
P
, Px, Py, PL

)

= (M⊥ coshY, P⊥ cosΦ, P⊥ sin Φ, M⊥ sinhY ) . (A5)

The first δ-function in (A2) implements the energy-
momentum constraint p · P = E∗M . For p⊥ 6= 0 it can
be used to fix the azimuthal angle Φ of the resonance
momentum P to

Φ± = ±Φ̃ with

cos Φ̃ =
E E

P
− p

L
P

L
− E∗M

p⊥P⊥

=
m⊥M⊥ cosh(Y − y) − E∗M

p⊥P⊥
. (A6)

We denote by P± the two values of P obtained by in-
serting the two solutions (A6) into (A5). Rewriting the

δ-function as δ(p ·P−E∗M) =
∑

±
δ(Φ−Φ±)

p⊥P⊥ sin Φ±
and doing

the Φ-integration in d3P/E
P

= M⊥dM⊥dY dΦ we find
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Sr→π(x; p) =
1

2

∑

±

∫ Y+

Y−

dY

∫ M2
⊥,+

M2
⊥,−

dM2
⊥

∫

d4X

×
∫

dτ Γe−Γτ δ(4)
[

x−
(

X +
P±

M
τ

)]

×Sdir
r (X,P±)Φr→π(P

±; p) , (A7)

where

Φr→π(P ; p) =
∫ s+

s−

ds
M g(s)

√

P 2
⊥p

2
⊥ − [E∗M −m⊥M⊥ cosh(Y − y)]2

(A8)

is the decay probability for a resonance r with momentum
P into a pion with momentum p. It is normalized to the
branching ratio br→π for the channel (A1) according to

∫

dy dp2
⊥ Φr→π(P ; y, p⊥) = br→π . (A9)

The case p⊥ = 0 is a little special: then the con-
straint p·P = E∗M in (A2) cannot be used to do the
Φ-integration, but the M⊥-integral can be done:

Sr→π(x; y, p⊥ = 0) =

= M

∫ s+

s−

ds g(s)

∫ 2π

0

dΦ

∫ Y+

Y−

dY
M E∗

m2 cosh2(Y − y)

×
∫

d4X

∫

dτ Γe−Γτ δ(4)
[

x−
(

X +
P

M
τ

)]

×Sdir
r (X,P )

∣

∣

∣

∣

M⊥= ME∗

m cosh(Y −y)

, (A10)

In the following we discuss only the case p⊥ 6= 0. The
kinematic limits for the integrals in (A7) and (A10) are,
for given y,m⊥ of the decay pion, determined by the
zeroes of the square root in (A8):

M⊥,± = M⊥ ± ∆M⊥ ≡ E∗Mm⊥ cosh(Y − y)

m2
⊥ cosh2(Y − y) − p2

⊥

±
Mp⊥

√

E∗2 + p2
⊥ −m2

⊥ cosh2(Y − y)

m2
⊥ cosh2(Y − y) − p2

⊥

, (A11)

Y± = y ± ∆Y ≡ y ± ln

(

p∗

m⊥
+

√

1 +
p∗2

m2
⊥

)

. (A12)

With these ingredients Eq.(A2) can be rewritten as

Sr→π(x, p) = M

∫ s+

s−

ds g(s)

∫ Y+

Y−

dY

∫ M2
⊥,+

M2
⊥,−

dM2
⊥

×
∫ ∞

0

dτ Γe−Γτ

×
1
2

∑

± S
dir
r

(

x− P±

M τ, P±
)

√

p2
⊥(M2

⊥ −M2) − [E∗M −m⊥M⊥ cosh(Y − y)]2
, (A13)

where the sum is over the two allowed values (A6) for Φ.
Rewriting the square root with the help of (A10) as

1
√

m2
⊥ cosh2(Y − y) − p2

⊥

1
√

(∆M⊥)2 − (M⊥ −M⊥)2

(A14)

and introducing new integration variables v ∈ [−1, 1],
ζ ∈ [−π, π] via

M⊥ = M⊥ + ∆M⊥ cos ζ , (A15)

Y = y + v∆Y , (A16)

Eq. (A13) can be further transformed into

Sr→π(x, p) =
∑

±

∫

R

∫ ∞

0

dτ Γe−ΓτSdir
r

(

x− P±

M
τ,P±

)

,

(A17)

with the following shorthand for the integration over the
resonance momenta:
∫

R

≡M

∫ s+

s−

ds g(s)

∫ 1

−1

∆Y dv
√

m2
⊥ cosh2(v∆Y ) − p2

⊥

×
∫ π

0

dζ
(

M⊥ + ∆M⊥ cos ζ
)

. (A18)

For the calculation of the correlation function we need the
Fourier transform of the emission function. It is obtained
from (A17) as

S̃r→π(q, p) =

∫

d4x eiq·x Sr→π(x, p)

=
∑

±

∫

R

∫ ∞

0

d(Γτ) exp

[

−Γτ

(

1 − i
q·P±

MΓ

)]

×
∫

d4x eiq·x Sdir
r (x, P±)

=
∑

±

∫

R

1

1 − i q·P
±

MΓ

S̃dir
r (q, P±) , (A19)

where in the first step we shifted the x-integration
variable and in the second step we performed the τ -
integration. For two- and three-body decays, this reads

• For two-body decays:

g(s) =
b

4πp∗
δ
(

s−m2
2

)

. (A20)

S̃r→π(q, p) =
Mb

4πp∗

∑

±

∫ 1

−1

∆Y dv
√

m2
⊥ cosh2(v∆Y ) − p2

⊥

×
∫ π

0

dζ
M⊥ + ∆M⊥ cos ζ

1 − iQ±
q

S̃dir
r (q, P±) ,

Q±
q =

M⊥

MΓ

(

q0 coshY − ql sinhY
)

− P⊥

MΓ
(qo cosΦ± + qs sin Φ±) . (A21)
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• For three-body decays (s− = (m2 + m3)
2, s+ =

(M −m)2):

g(s) =
Mb

2πs

√

[s− (m2 +m3)2][s− (m2 −m3)2]

Q(M,m,m2,m3)
,

(A22)

Q(M,m,m2,m3) =

∫ s+

s−

ds′

s′

√

(M +m)2 − s′

×
√

s+ − s′
√

s− − s′
√

(m2 −m3)2 − s′ ,

S̃r→π(q, p) =
bM2

2πQ(M,m,m2,m3)

×
∫ s+

s−

ds

s

√

[s− (m2 +m3)2][s− (m2 −m3)2]

×
∫ 1

−1

∆Y dv
√

m2
⊥ cosh2(v∆Y ) − p2

⊥

×
∫ π

0

dζ
M⊥ + ∆M⊥ cos ζ

1 − iQ±
q

S̃dir
r (q, P±) .

APPENDIX B: THE FOURIER TRANSFORM OF

THE EMISSION FUNCTION

Here, we give details of the calculation of the Fourier
transform S̃dir

r (q, P ) =
∫

d4x eiq·xSdir
r (x, P ) for the reso-

nance emission functions (4.6). The τ -integration can be
done analytically: Using q · x = τ A − qox − qsy with A
from (5.2c) we obtain

∫

τ dτ eiAτ exp

(

− (τ − τ0)
2

2(∆τ)2

)

=
√

2π(∆τ)2 eiAτ0 e−
1
2A

2(∆τ)2
(

τ0 + iA(∆τ)2
)

. (B1)

The angular integral is also easily done: writing qo =
q⊥ cosϕ, qs = q⊥ sinϕ, such that qox+qsy = rq⊥ cos(φ−
ϕ) (where φ is the polar angle of x and y), the integral
over the angle-dependent part of the source function (4.6)
is written as

∫ 2π

0

dφ e−irq⊥ cos(φ−ϕ) e
P⊥
T

sinh ηt cos(φ−Φ)

=

∫ 2π

0

dψ e−irq⊥ cos(ψ+ϕ̃) e
P⊥
T

sinh ηt cosψ , (B2)

with ψ = φ−Φ, ϕ̃ = Φ−ϕ. Separating real and imaginary
parts one obtains modified Bessel functions [45]:

∫ 2π

0

dψ exp
(

P⊥

T sinh ηt cosψ
)

× cos (rq⊥ cos ϕ̃ cosψ − rq⊥ sin ϕ̃ sinψ)

= π
(

I0(
√
C − iD) + I0(

√
C + iD)

)

, (B3a)

−i
∫ 2π

0

dψ exp
(

P⊥

T sinh ηt cosψ
)

× sin (rq⊥ cos ϕ̃ cosψ − rq⊥ sin ϕ̃ sinψ)

= π
(

I0(
√
C − iD) − I0(

√
C + iD)

)

, (B3b)

where C and D are given in (5.2a,b). The remaining
integrals over r and η are given in (5.1) and must be
done numerically.

The single particle spectrum is obtained by evaluat-
ing S̃(q, P ) at q = 0. Then also A, Aq and D van-
ish (i.e. the dependence on the polar angle Φ of the
transverse momentum P⊥ drops out), and C reduces
to C = (P⊥ sinh ηt(r)/T )2. The transverse momentum
spectrum is obtained by additionally integrating over the
rapidity Y associated with P . This integral can again be
done analytically:

dNdir
r

dM2
⊥

= π

∫

dY S̃dir
r (0;M⊥, Y )

=
2Jr + 1

(2π)3/2
M⊥τ0 e

µr
T

∫ ∞

0

r dr e−
r2

2R2

×I0
(

P⊥

T sinh ηt(r)
)

∫

dη exp

(

− η2

2(∆η)2

)

×
∫

dY cosh(η − Y )

× exp
[

−M⊥

T cosh ηt cosh(η − Y )
]

=
2Jr + 1

2π
(2τ0∆η) e

µi
T M⊥

∫ ∞

0

r dr e−
r2

2R2

×K1

(

M⊥

T cosh ηt(r)
)

I0
(

P⊥

T sinh ηt(r)
)

. (B4)

The K1-function results from the last integral in (B4)
after a simple shift of the integration variable, and the
remaining Gaussian integral over η is trivial.
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Plümer, B.R. Schlei and R. M. Weiner, Phys. Lett. B
300, 404 (1993); and Phys. Rev. D 47, 3860 (1993).
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[12] U. Heinz, B. Tomášik, U.A. Wiedemann, and Wu Y.-F.,
Phys. Lett. B 382, 181 (1996).

[13] Wu Y.-F., U. Heinz, B. Tomášik, and U.A. Wiedemann,
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