22,699 research outputs found
A Structural Comparison of Ordered and Non-Ordered Ion Doped Silicate Bioactive Glasses
One of the key benefits of sol-gel-derived glasses is the presence of a mesoporous structure
and the resulting increase in surface area. This enhancement in textural properties has a significant
e ect on the physicochemical properties of the materials. In this context the aim of this study was to
investigate how sol-gel synthesis parameters can influence the textural and structural properties of
mesoporous silicate glasses. We report the synthesis and characterization of metal ion doped sol-gel
derived glasses with di erent dopants in the presence or absence of a surfactant (Pluronic P123)
used as structure-directing templating agent. Characterization was done by several methods. Using
a structure directing agent led to larger surface areas and highly ordered mesoporous structures.
The chemical structure of the non-ordered glasses was modified to a larger extent than the one
of the ordered glasses due to increased incorporation of dopant ions into the glass network. The
results will help to further understand how the properties of sol-gel glasses can be controlled by
incorporation of metal dopants, in conjunction with control over the textural properties, and will be
important to optimize the properties of sol-gel glasses for specific applications, e.g., drug delivery,
bone regeneration, wound healing, and antibacterial materials.European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 643050, project “HyMedPoly
Creation of ventricular septal defects on the beating heart in a new pig model
Background/ Aims: So far, surgical and interventional therapies for muscular ventricular septal defects ( mVSDs) beyond the moderator band have had their limitations. Thus, alternative therapeutic strategies should be developed. We present a new animal model for the evaluation of such strategies. Methods: In a pig model ( n = 9), anterolateral thoracotomy was performed for exposure of the left ventricle. mVSDs were created under two- and three- dimensional echocardiography with a 7.5- mm sharp punch instrument, which was forwarded via a left ventricular puncture without extracorporeal circulation. Results: Creation of mVSDs was successful in all animals ( n = 9) confirmed by echocardiography, hemodynamic measurements and autopsy. The defects were located in the midmuscular ( n = 4), apical ( n = 1), inlet ( n = 2) and anterior part ( n = 2) of the muscular septum. All animals were hemodynamically stable for further procedures. The diameter and shunt volume of the mVSDs were 4.8 - 7.3 mm ( mean: 5.9 mm) and 12.9 - 41.3% ( mean: 22.1%), respectively. Autopsy confirmed in all animals the creation of a substantial defect. Conclusion: The described new technique for creation of an mVSD on the beating heart in a pig model is suitable for the evaluation of new therapeutic strategies for mVSD closure. Copyright (C) 2008 S. Karger AG, Basel
Weather Impact on Airport Performance
Weather events have a significant impact on airport performance and cause delayed operations if the airport capacity is constrained. We provide quantification of the individual airport performance with regards to an aggregated weather-performance metric. Specific weather phenomena are categorized by the air traffic management airport performance weather algorithm, which aims to quantify weather conditions at airports based on aviation routine meteorological reports. Our results are computed from a data set of 20.5 million European flights of 2013 and local weather data. A methodology is presented to evaluate the impact of weather events on the airport performance and to select the appropriate threshold for significant weather conditions. To provide an efficient method to capture the impact of weather, we modelled departing and arrival delays with probability distributions, which depend on airport size and meteorological impacts. These derived airport performance scores could be used in comprehensive air traffic network simulations to evaluate the network impact caused by weather induced local performance deterioration
Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
The Landau-Lifshitz fluctuating hydrodynamics is used to study the
statistical properties of the linearized Kolmogorov flow. The relative
simplicity of this flow allows a detailed analysis of the fluctuation spectrum
from near equilibrium regime up to the vicinity of the first convective
instability threshold. It is shown that in the long time limit the flow behaves
as an incompressible fluid, regardless of the value of the Reynolds number.
This is not the case for the short time behavior where the incompressibility
assumption leads in general to a wrong form of the static correlation
functions, except near the instability threshold. The theoretical predictions
are confirmed by numerical simulations of the full nonlinear fluctuating
hydrodynamic equations.Comment: 20 pages, 4 figure
X-Ray Microanalysis in Cryosections of Natively Frozen Paramecium Caudatum with Regard to Ion Distribution in Ciliates
Cells of Paramecium caudatum were shock-frozen without pretreatment for cryoultramicrotomy and freeze-dried for subsequent X-ray microanalysis. Na, Mg, P, S, Cl, K, and Ca were detected in different amounts in several subcellular compartments. In particular, calcium was localized below the cell surface (pellicle). Trichocysts were found to contain significant amounts of Na in their base but not in the tip. Na, Mg, P, S, Cl, K, Ca were found in electron dense deposits within the lumen of the contractile vacuole. A small K concentration was found in the cytoplasm and in the mitochondria. X-ray microanalysis of the element distribution in different subcellular compartments provides information for the understanding of cellular functions such as exocytosis, locomotion, and ion regulation
The Influence of Different Cryopreparations on the Distribution of Ions in Bullfrog Myocard Cells
Bullfrog heart muscle trabecula are shock-frozen in liquid propane cooled by liquid nitrogen and then processed for X-ray microanalysis in two different ways: 1. Freeze-drying followed by vacuum embedding. 2. Cryoultramicrotomy and freeze-drying.
Stained sections of freeze-dried, embedded tissue exhibit detailed ultrastructure, but are useless for X-ray microanalysis. Unstained, dry cut plastic-sections are suitable for X-ray microanalysis, but the ultrastructure appears faint. Higher electron optical contrast and peak-to-background ratio of X-ray spectra are generally obtained in freeze-dried cryosections. Both preparation methods show that the X-ray spectra are influenced by the quality of cryofixation. The phosphorus/potassium ratio in nuclei increases with increasing ice crystal size
Mott-Hubbard exciton in the optical conductivity of YTiO3 and SmTiO3
In the Mott-Hubbard insulators YTiO3 and SmTiO3 we study optical excitations
from the lower to the upper Hubbard band, d^1d^1 -> d^0d^2. The multi-peak
structure observed in the optical conductivity reflects the multiplet structure
of the upper Hubbard band in a multi-orbital system. Absorption bands at 2.55
and 4.15 eV in the ferromagnet YTiO3 correspond to final states with a triplet
d^2 configuration, whereas a peak at 3.7 eV in the antiferromagnet SmTiO3 is
attributed to a singlet d^2 final state. A strongly temperature-dependent peak
at 1.95 eV in YTiO3 and 1.8 eV in SmTiO3 is interpreted in terms of a Hubbard
exciton, i.e., a charge-neutral (quasi-)bound state of a hole in the lower
Hubbard band and a double occupancy in the upper one. The binding to such a
Hubbard exciton may arise both due to Coulomb attraction between
nearest-neighbor sites and due to a lowering of the kinetic energy in a system
with magnetic and/or orbital correlations. Furthermore, we observe anomalies of
the spectral weight in the vicinity of the magnetic ordering transitions, both
in YTiO3 and SmTiO3. In the G-type antiferromagnet SmTiO3, the sign of the
change of the spectral weight at T_N depends on the polarization. This
demonstrates that the temperature dependence of the spectral weight is not
dominated by the spin-spin correlations, but rather reflects small changes of
the orbital occupation.Comment: Strongly extended version; new data of SmTiO3 included; detailed
discussion of temperature dependence include
Chemo-mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits
Among some few others tests, the evaluation of the Atterberg limits is a very basic soil mechanical test allowing a first insight into the chemical reactivity of clays. Basically, the liquid limit and the plasticity index are highly and mainly influenced by the ability of clay minerals to interact with liquids. In this contribution, a correlation between the Atterberg limits and clay mineralogy is proposed. This correlation increases the understanding between clay mineralogists and engineers in soil mechanics; additionally a wealth of information in clay mineralogy literature is now available to predict the mechanical behaviour of clays via index tests. (C) 2003 Elsevier B.V. All rights reserved
- …