5 research outputs found

    Elucidating yeast glycolytic dynamics at steady state growth and glucose pulses through kinetic metabolic modeling

    Get PDF
    Microbial cell factories face changing environments during industrial fermentations. Kinetic metabolic models enable the simulation of the dynamic metabolic response to these perturbations, but their development is challenging due to model complexity and experimental data requirements. An example of this is the well-established microbial cell factory Saccharomyces cerevisiae, for which no consensus kinetic model of central metabolism has been developed and implemented in industry. Here, we aim to bring the academic and industrial communities closer to this consensus model. We developed a physiology informed kinetic model of yeast glycolysis connected to central carbon metabolism by including the effect of anabolic reactions precursors, mitochondria and the trehalose cycle. To parametrize such a large model, a parameter estimation pipeline was developed, consisting of a divide and conquer approach, supplemented with regularization and global optimization. Additionally, we show how this first mechanistic description of a growing yeast cell captures experimental dynamics at different growth rates and under a strong glucose perturbation, is robust to parametric uncertainty and explains the contribution of the different pathways in the network. Such a comprehensive model could not have been developed without using steady state and glucose perturbation data sets. The resulting metabolic reconstruction and parameter estimation pipeline can be applied in the future to study other industrially-relevant scenarios. We show this by generating a hybrid CFD-metabolic model to explore intracellular glycolytic dynamics for the first time. The model suggests that all intracellular metabolites oscillate within a physiological range, except carbon storage metabolism, which is sensitive to the extracellular environment

    Kinetic Modeling of Saccharomyces cerevisiae Central Carbon Metabolism: Achievements, Limitations, and Opportunities

    No full text
    Central carbon metabolism comprises the metabolic pathways in the cell that process nutrients into energy, building blocks and byproducts. To unravel the regulation of this network upon glucose perturbation, several metabolic models have been developed for the microorganism Saccharomyces cerevisiae. These dynamic representations have focused on glycolysis and answered multiple research questions, but no commonly applicable model has been presented. This review systematically evaluates the literature to describe the current advances, limitations, and opportunities. Different kinetic models have unraveled key kinetic glycolytic mechanisms. Nevertheless, some uncertainties regarding model topology and parameter values still limit the application to specific cases. Progressive improvements in experimental measurement technologies as well as advances in computational tools create new opportunities to further extend the model scale. Notably, models need to be made more complex to consider the multiple layers of glycolytic regulation and external physiological variables regulating the bioprocess, opening new possibilities for extrapolation and validation. Finally, the onset of new data representative of individual cells will cause these models to evolve from depicting an average cell in an industrial fermenter, to characterizing the heterogeneity of the population, opening new and unseen possibilities for industrial fermentation improvement

    Kinetic Modeling of Saccharomyces cerevisiae Central Carbon Metabolism: Achievements, Limitations, and Opportunities

    Get PDF
    Central carbon metabolism comprises the metabolic pathways in the cell that process nutrients into energy, building blocks and byproducts. To unravel the regulation of this network upon glucose perturbation, several metabolic models have been developed for the microorganism Saccharomyces cerevisiae. These dynamic representations have focused on glycolysis and answered multiple research questions, but no commonly applicable model has been presented. This review systematically evaluates the literature to describe the current advances, limitations, and opportunities. Different kinetic models have unraveled key kinetic glycolytic mechanisms. Nevertheless, some uncertainties regarding model topology and parameter values still limit the application to specific cases. Progressive improvements in experimental measurement technologies as well as advances in computational tools create new opportunities to further extend the model scale. Notably, models need to be made more complex to consider the multiple layers of glycolytic regulation and external physiological variables regulating the bioprocess, opening new possibilities for extrapolation and validation. Finally, the onset of new data representative of individual cells will cause these models to evolve from depicting an average cell in an industrial fermenter, to characterizing the heterogeneity of the population, opening new and unseen possibilities for industrial fermentation improvement
    corecore