22,739 research outputs found

    Non-Fermi liquid signatures in the Hubbard Model due to van Hove singularities

    Full text link
    When a van-Hove singularity is located in the vicinity of the Fermi level, the electronic scattering rate acquires a non-analytic contribution. This invalidates basic assumptions of Fermi liquid theory and within perturbative treatments leads to a non-Fermi liquid self-energy and transport properties.Such anomalies are shown to also occur in the strongly correlated metallic state. We consider the Hubbard model on a two-dimensional square lattice with nearest and next-nearest neighbor hopping within the single-site dynamical mean-field theory. At temperatures on the order of the low-energy scale T0T_0 an unusual maximum emerges in the imaginary part of the self-energy which is renormalized towards the Fermi level for finite doping. At zero temperature this double-well structure is suppressed, but an anomalous energy dependence of the self-energy remains. For the frustrated Hubbard model on the square lattice with next-nearest neighbor hopping, the presence of the van Hove singularity changes the asymptotic low temperature behavior of the resistivity from a Fermi liquid to non-Fermi liquid dependency as function of doping. The results of this work are discussed regarding their relevance for high-temperature cuprate superconductors.Comment: revised version, accepted in Phys.Rev.

    Entropy and Long range correlations in literary English

    Full text link
    Recently long range correlations were detected in nucleotide sequences and in human writings by several authors. We undertake here a systematic investigation of two books, Moby Dick by H. Melville and Grimm's tales, with respect to the existence of long range correlations. The analysis is based on the calculation of entropy like quantities as the mutual information for pairs of letters and the entropy, the mean uncertainty, per letter. We further estimate the number of different subwords of a given length nn. Filtering out the contributions due to the effects of the finite length of the texts, we find correlations ranging to a few hundred letters. Scaling laws for the mutual information (decay with a power law), for the entropy per letter (decay with the inverse square root of nn) and for the word numbers (stretched exponential growth with nn and with a power law of the text length) were found.Comment: 8 page

    Bulk, rare earth and other trace elements in Apollo 14 and 15 and Luna 16 samples

    Get PDF
    The chemical abundances were measured by instrumental and radiochemical neutron activation analysis in a variety of lunar specimens. Apollo 14 soils are characterized by significant enrichments of Al2O3, Na2O and K2O and depletions of TiO2, FeO, MnO and Cr2O3 relative to Apollo 11 and to most of Apollo 12 soils. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within approximately 200 m from the lunar module. Two Luna 16 breccias are similar in composition to Luna 16 soils. Four Apollo 15 soils (LM, STA 4, 9, and 9a) have variable compositions. Interelement correlations between MnO-FeO, Sc-FeO, V-Cr2O3 and K2O-Hf negate the hypothesis that howardite achondrites may be primitive lunar matter, argue against the fission hypothesis for the origin of the moon, and precludes any selective large scale volatilization of alkalies during lunar magmatic events

    The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate Dynamics 50 (2018): 1291–1305, doi:10.1007/s00382-017-3685-y.The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.LL is supported by the Postdoctoral Scholar Program at WHOI, with funding provided by the Oceans and Climate Change Institute. RWS is supported by NASA Grants NNX12AF59G and NNX14AH38G, and NSF Grant OCE-1129646. CCU is supported by NSF Grant AGS-1355339

    Preliminary data on boulders at station 6, Apollo 17 landing site

    Get PDF
    A cluster of boulders at Station 6 (Apollo 17 landing site) consists of breccias derived from the North Massif. Three preliminary lithologic units were established, on the basis of photogeologic interpretations; all lithologies identified photogeologically were sampled. Breccia clasts and matrices studied petrographically and chemically fall into two groups by modal mineralogy: (1) low-K Fra Mauro or high basalt composition, consisting of 50-60% modal feldspar, approximately 45% orthopyroxene and 1-7% Fe-Ti oxide; (2) clasts consisting of highland basalt composition, consisting of 70% feldspar, 30% orthopyroxene and olivine and a trace of Fe-Ti oxide

    Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice

    Full text link
    Using small-angle neutron scattering, we investigated the behavior of a metastable vortex lattice state in MgB2 as it is driven towards equilibrium by an AC magnetic field. This shows an activated behavior, where the AC field amplitude and cycle count are equivalent to, respectively, an effective "temperature" and "time". The activation barrier increases as the metastable state is suppressed, corresponding to an aging of the vortex lattice. Furthermore, we find a cross-over from a partial to a complete suppression of metastable domains depending on the AC field amplitude, which may empirically be described by a single free parameter. This represents a novel kind of collective vortex behavior, most likely governed by the nucleation and growth of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia

    Spatially-Resolved Spectra of the "Teacup" AGN: Tracing the History of a Dying Quasar

    Get PDF
    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing Extended Emission-Line Regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup Active Galactic Nucleus (AGN), nicknamed for its EELR, which has a handle like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze physical conditions of this galaxy with long-slit ground based spectroscopy from Lowell, Lick, and KPNO observatories. With the Lowell 1.8m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] 6716/6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 years, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long time scale variability.Comment: 38 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Get PDF
    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions

    A double-diffusive interface tank for dynamic-response studies

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2005. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 63 (2005): 263-289, doi:10.1357/0022240053693842.A large tank capable of long-term maintenance of a sharp temperature-salinity interface has been developed and applied to measurements of the dynamical response of oceanographic sensors. A two-layer salt-stratified system is heated from below and cooled from above to provide two convectively mixed layers with a thin double-diffusive interface separating them. A temperature jump exceeding 10°C can be maintained over 1–2 cm (a vertical temperature gradient of order 103°C/m) for several weeks. A variable speed-lowering system allows testing of the dynamic response of conductivity and temperature sensors in full-size oceanographic instruments. An acoustic echo sounder and shadowgraph system provide nondisruptive monitoring of the interface and layer microstructure. Tests of several sensor systems show how data from the facility is used to determine sensor response times using several fitting techniques and the speed dependence of thermometer time constants is illustrated. The linearity of the conductivity–temperature relationship across the interface is proposed as a figure of merit for design of lag-correction filters to accurately match temperature and conductivity sensors for the computation of salinity. The effects of finite interface thickness, slow sensor sampling rates and the thermal mass of the conductivity cell are treated. Sensor response characterization is especially important for autonomous instruments where data processing and compression must be performed in-situ, but is also helpful in the development of new sensors and in assuring accurate salinity records from traditional wire-lowered and towed systems.This research was supported by the National Science Foundation, grants OCE-97-11869 and OCE-02-40956, NOAA CORC grant 154368 and a WHOI Mellon Technical Staff Award
    • …
    corecore