2,813 research outputs found

    Temperatures of shock-induced shear instabilities and their relationship to fusion curves

    Get PDF
    New emission spectra for MgO and CaAl_2Si_2O_8 (glass) are observed from 430 to 820 nm. Taken with previous data, we suggest that transparent solids display three regimes of light emission upon shock compression to successively higher pressures: (1) characteristic radiation such as observed in MgO and previously in other minerals, (2) heterogeneous hot spot (greybody) radiation observed in CaAl_2Si_2O_8 and previously in all transparent solids undergoing shock-induced phase transformations, and (3) blackbody emission observed in the high pressure phase regime in NaCl, SiO_2, CaO, CaAl_2Si_2O_8, and Mg_2SiO_4. The onset of regime (2) may delineate the onset of shock-induced polymorphism whereas the onset of regime (3) delineates the Hugoniot pressure required to achieve local thermal equilibrium in the shocked solid. We also propose that the hot spot temperatures and corresponding shock pressures determined in regime (2) delineate points on the fusion curves of the high pressure phase

    Shock temperatures in silica glass: Implications for modes of shock-induced deformation, phase transformation, and melting with pressure

    Get PDF
    Gray body temperatures and emittances of silica glass under shock compression between 10 and 30 GPa are determined. Observed radiative temperatures are higher than computed continuum temperatures for shock-compressed silica glass; however, below ∼26 GPa observed emittances are <0.02. This suggests that fused quartz deforms heterogeneously in this shock pressure range as has been observed in other minerals. Between 10 and 16 GPa, radiative temperatures decrease from 4400 K to 3200 K, whereas above 16–30 GPa, gray body temperatures of ∼3000 K with low emittances are observed. The emittances increase with pressure from 0.02 to 0.9. The pressure range from 10 to 16 GPa coincides with the permanent densification region, while the 16–30 GPa range coincides with the inferred mixed phase region along the silica glass Hugoniot. The differing radiative behaviors may relate to these modes of deformation. Based upon earlier shock recovery experiments and a proposed model of heterogeneous deformation under shock compression, the temperatures associated with low emittances in the mixed phase region probably represent the melting temperature of the high-pressure phase, stishovite, which can be expected to crystallize from a melt in hot zones. Above 20 GPa the melting temperature of stishovite would therefore be 3000 K±200 K and almost independent of pressure to 30 GPa. The effects of pressure on melting relations for the system SiO_2–Mg_2SiO_4 are considered together with the proposed stishovite melting curve and suggested maximum solidus temperatures within the mantle of ∼2370 K at 12.5 GPa and ∼2530 K at 20.0 GPa. Using the proposed stishovite melting temperatures Tm and estimates of upper mantle temperatures T, the effective viscosity, which can be considered a function of the homologous temperature T/T_m, appears to remain nearly constant from 200 to 600 km depth in the Earth

    In-situ holographic elastic moduli measurements from boreholes

    Get PDF
    We have developed a unique technique employing optical holography to measure the static Young's modulus (E) from a borehole. In the experiment, a known point force induces micron scale displacements on the borehole wall which are recorded by a double-exposure hologram. Raw data consist of dark fringes superimposed on the three-dimensional image whose pattern is modeled to find E directly. In the laboratory, the holographic technique determined E on rock and metal samples to an uncertainty better than 10 percent. For example, double exposure holograms of a saw-cut sample of dolomitic marlstone gave an E of 16.8 ± 2.8 GPa in agreement with 17.2 ± 2.0 GPa predicted by published density-modulus relationships. Field tests of a holographic tool in a horizontal mine pillar borehole gave in-situ Es which range from 26.9 to 36.0 GPa. Although these data could be interpreted as localized elastic heterogeneity within the rock mass, elastic anisotropy of the rock is a possible explanation for this variation

    Shock-induced melting and shear banding in single-crystal NaCl

    Get PDF
    Radiative color temperatures were measured in single-crystal sodium chloride under shock compression parallel to [100] over a pressure range from 20 to 35 GPa. Color temperatures from 2500 to 4500 K and emittances from 0.003 to 0.3 were determined by fitting observed spectra (450–850 nm) to the Planck greybody radiation law. These data support a heterogeneous shock deformation model of shocked halite in this pressure range. A 2500-K temperature rise, of unknown origin, is observed over the B1–B2 mixed phase region from 25 to 30 GPa. Assuming that shock deformation occurs via yielding in localized planar zones which become melt and the melting temperature at high pressure controls the temperature, we infer that the temperature of the B2 fusion curve from 30 to 35 GPa rises from 3200 to 3300 K. The B1–B2-liquid triple point is predicted to be at a temperature of 2250 K and 23.5 GPa

    A versatile facility for laboratory studies of viscoelastic and poroelastic behaviour of rocks

    No full text
    Novel laboratory equipment has been modified to allow both torsional and flexural oscillation measurements at sub-microstrain amplitudes, thereby providing seismic-frequency constraints on both the shear and compressional wave properties of cylindrical rock specimens within the linear regime. The new flexural mode capability has been tested on experimental assemblies containing fused silica control specimens. Close consistency between the experimental data and the results of numerical modelling with both finite-difference and finite-element methods demonstrates the viability of the new technique. The capability to perform such measurements under conditions of independently controlled confining and pore-fluid pressure, with emerging strategies for distinguishing between local (squirt) and global (specimen-wide) fluid flow, will have particular application to the study of frequency-dependent seismic properties expected of cracked and fluid-saturated rocks of the Earth's upper crust.Australian Research Council for funding (Grant DP0880453)

    Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Get PDF
    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability
    corecore