35 research outputs found

    2 nd Runner-Up Outstanding Paper presented at the 19 th Annual Association for International Agricultural and Extension Education Conference

    Get PDF
    Abstract This descriptive-correlational study investigated Ohio State University (O.S.U.) Extension county agent

    Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise

    Get PDF
    Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising

    Condensin I Recruitment to Base Damage-Enriched DNA Lesions Is Modulated by PARP1

    Get PDF
    Condensin I is important for chromosome organization and segregation in mitosis. We previously showed that condensin I also interacts with PARP1 in response to DNA damage and plays a role in single-strand break repair. However, whether condensin I physically associates with DNA damage sites and how PARP1 may contribute to this process were unclear. We found that condensin I is preferentially recruited to DNA damage sites enriched for base damage. This process is dictated by PARP1 through its interaction with the chromosome-targeting domain of the hCAP-D2 subunit of condensin I

    Induction of Olig2+ Precursors by FGF Involves BMP Signalling Blockade at the Smad Level

    Get PDF
    During normal development oligodendrocyte precursors (OPCs) are generated in the ventral spinal cord in response to Sonic hedgehog (Shh) signalling. There is also a second, late wave of oligodendrogenesis in the dorsal spinal cord independent of Shh activity. Two signalling pathways, controlled by bone morphogenetic protein and fibroblast growth factor (FGF), are active players in dorsal spinal cord specification. In particular, BMP signalling from the roof plate has a crucial role in setting up dorsal neural identity and its inhibition is sufficient to generate OPCs both in vitro and in vivo. In contrast, FGF signalling can induce OPC production from dorsal spinal cord cultures in vitro. In this study, we examined the cross-talk between mitogen-activated protein kinase (MAPK) and BMP signalling in embryonic dorsal spinal cord cultures at the SMAD1/5/8 (SMAD1) transcription factor level, the main effectors of BMP activity. We have previously shown that FGF2 treatment of neural precursor cells (NPCs) derived from rat E14 dorsal spinal cord is sufficient to generate OPCs in vitro. Utilising the same system, we now show that FGF prevents BMP-induced nuclear localisation of SMAD1-phosphorylated at the C-terminus (C-term-pSMAD1). This nuclear exclusion of C-term-pSMAD1 is dependent on MAPK activity and correlates with OLIG2 upregulation, the obligate transcription factor for oligodendrogenesis. Furthermore, inhibition of the MAPK pathway abolishes OLIG2 expression. We also show that SMAD4, which acts as a common partner for receptor-regulated Smads including SMAD1, associates with a Smad binding site in the Olig2 promoter and dissociates from it upon differentiation. Taken together, these results suggest that FGF can promote OPC generation from embryonic NPCs by counteracting BMP signalling at the Smad1 transcription factor level and that Smad-containing transcriptional complexes may be involved in direct regulation of the Olig2 promoter

    In vitro nuclear interactome of the HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.</p> <p>Results</p> <p>Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied <it>in silico </it>analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.</p> <p>Conclusion</p> <p>We have completed the <it>in vitro </it>Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.</p

    Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

    Get PDF
    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis
    corecore