13 research outputs found

    Relevance of chemical vs electrochemical oxidation of tunable carbene iridium complexes for catalytic water oxidation

    No full text
    Based on previous work that identified iridium(III) Cp* complexes containing a C,N-bidentate chelating triazolylidene-pyridyl ligand (Cp* = pentamethylcyclopentadienyl, C 5Me 5 –) as efficient molecular water oxidation catalysts, a series of new complexes based on this motif has been designed and synthesized in order to improve catalytic activity. Modifications include specifically the introduction of electron-donating substituents into the pyridyl unit of the chelating ligand (H, a; 5-OMe, b; 4-OMe, c; 4-tBu, d; 4-NMe 2, e), as well as electronically active substituents on the triazolylidene C4 position (H, 8; COOEt, 9; OEt, 10; OH, 11; COOH, 12). Chemical oxidation using cerium ammonium nitrate (CAN) indicates a clear structure-activity relationship with electron-donating groups enhancing catalytic turnover frequency, especially when the donor substituent is positioned on the triazolylidene ligand fragment (TOF max = 2500 h – 1 for complex 10 with a MeO group on pyr and a OEt-substituted triazolylidene, compared to 700 h – 1 for the parent benchmark complex without substituents). Electrochemical water oxidation does not follow the same trend, and reveals that complex 8b without a substituent on the triazolylidene fragment outperforms complex 10 by a factor of 5, while in CAN-mediated chemical water oxidation, complex 10 is twice more active than 8b. This discrepancy in catalytic activity is remarkable and indicates that caution is needed when benchmarking iridium water oxidation catalysts with chemical oxidants, especially when considering that application in a potential device will most likely involve electrocatalytic water oxidation

    Relevance of chemical vs electrochemical oxidation of tunable carbene iridium complexes for catalytic water oxidation

    Get PDF
    \u3cp\u3eBased on previous work that identified iridium(III) Cp* complexes containing a C,N-bidentate chelating triazolylidene-pyridyl ligand (Cp* = pentamethylcyclopentadienyl, C \u3csub\u3e5\u3c/sub\u3eMe \u3csub\u3e5\u3c/sub\u3e \u3csup\u3e–\u3c/sup\u3e) as efficient molecular water oxidation catalysts, a series of new complexes based on this motif has been designed and synthesized in order to improve catalytic activity. Modifications include specifically the introduction of electron-donating substituents into the pyridyl unit of the chelating ligand (H, a; 5-OMe, b; 4-OMe, c; 4-tBu, d; 4-NMe \u3csub\u3e2\u3c/sub\u3e, e), as well as electronically active substituents on the triazolylidene C4 position (H, 8; COOEt, 9; OEt, 10; OH, 11; COOH, 12). Chemical oxidation using cerium ammonium nitrate (CAN) indicates a clear structure-activity relationship with electron-donating groups enhancing catalytic turnover frequency, especially when the donor substituent is positioned on the triazolylidene ligand fragment (TOF \u3csub\u3emax\u3c/sub\u3e = 2500 h \u3csup\u3e–\u3c/sup\u3e \u3csup\u3e1\u3c/sup\u3e for complex 10 with a MeO group on pyr and a OEt-substituted triazolylidene, compared to 700 h \u3csup\u3e–\u3c/sup\u3e \u3csup\u3e1\u3c/sup\u3e for the parent benchmark complex without substituents). Electrochemical water oxidation does not follow the same trend, and reveals that complex 8b without a substituent on the triazolylidene fragment outperforms complex 10 by a factor of 5, while in CAN-mediated chemical water oxidation, complex 10 is twice more active than 8b. This discrepancy in catalytic activity is remarkable and indicates that caution is needed when benchmarking iridium water oxidation catalysts with chemical oxidants, especially when considering that application in a potential device will most likely involve electrocatalytic water oxidation. \u3c/p\u3

    CCDC 1909355: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009

    CCDC 1909357: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009

    CCDC 1909358: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009

    CCDC 1909363: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009

    CCDC 1909361: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009

    CCDC 1909359: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009

    CCDC 1909360: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009

    CCDC 1909354: Experimental Crystal Structure Determination

    No full text
    Related Article: Marta Olivares, Cornelis J. M. van der Ham, Velabo Mdluli, Markus Schmidtendorf, Helge Müller-Bunz, Tiny W.G.M Verhoeven, Mo Li, Hans J. W. Niemantsverdriet, Dennis G. H. Hetterscheid, Stefan Bernhard, Martin Albrecht, J. W. Hans Niemantsverdriet|2020|Eur.J.Inorg.Chem.|2020|801|doi:10.1002/ejic.20200009
    corecore