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Abstract 

Based on previous work that identified iridium(III) Cp* complexes containing a C,N-bidentate 

chelating triazolylidene-pyridyl ligand (Cp* = pentamethylcyclopentadienyl, C5Me5
–) as 

efficient molecular water oxidation catalysts, a series of new complexes based on this motif has 

been designed and synthesized in order to improve catalytic activity. Modifications include 

specifically the introduction of electron-donating substituents into the pyridyl unit of the 

chelating ligand (H, a; 5-OMe, b; 4-OMe, c; 4-tBu, d; 4-NMe2, e), as well as electronically 

active substituents on the triazolylidene C4 position (H, 8; COOEt, 9; OEt, 10; OH, 11; COOH, 

12). Chemical oxidation using cerium ammonium nitrate (CAN) indicates a clear structure-

activity relationship with electron-donating groups enhancing catalytic turnover frequency, 

especially when the donor substituent is positioned on the triazolylidene ligand fragment 

(TOFmax = 2500 h–1 for complex 10 with a MeO group on pyr and a OEt-substituted 

triazolylidene, compared to 700 h–1 for the parent benchmark complex without substituents). 

Electrochemical water oxidation does not follow the same trend, and reveals that complex 8b 

without a substituent on the triazolylidene fragment outperforms complex 10 by a factor of 5, 

while in CAN-mediated chemical water oxidation, complex 10 is twice more active than 8b. 

This discrepancy in catalytic activity is remarkable and indicates that caution is needed when 

benchmarking iridium water oxidation catalysts with chemical oxidants, especially when 

considering that application in a potential device will most likely involve electrocatalytic water 

oxidation. 

 

 

Introduction 

Water splitting has been considered as the key chemical technology to store transient energy 

from renewable sources such as wind and sunlight and is therefore critical for reducing our 

dependence on slow-growing fossil feedstocks.[1–4] While the water reduction half-cycle 

providing H2 as high-energy fuel has been investigated with considerable success,[5–8] the water 

oxidation half-cycle is much more challenging due to the harsh conditions and the molecular 

complexity of O2 formation from H2O oxidation.[9–11] As a consequence, much effort has been 

devoted to the development of catalysts that mediate water oxidation, including semiconductor 

materials as well as molecularly defined metal complexes. Amongst the various classes of 

homogeneous catalysts, ruthenium(II)[12,13] and iridium(III)[14,15] complexes have shown 

particularly promising properties,[16–21] the former through remarkably high turnover 
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frequencies,[22] the latter by their exceptional longevity with turnover numbers of tens of 

thousands.[23] Despite the harsh conditions required for water oxidation, it has been 

demonstrated that iridium(III) Cp* complexes remain efficient homogeneous catalysts, 

provided they contain a chelating ligand.[24–28] This behavior enabled mechanistic 

investigations, which revealed (i) that the Cp* ligand is degraded, presumably during catalyst 

activation,[29–33] and (ii) that bidentate chelating ligands containing strong donors such as 

alkoxides or (abnormal) carbenes enhance catalytic activity,[26,34–37] suggesting involvement of 

a high-valent iridium species in the turnover-limiting step. Mechanistic investigations of 

homogeneous water oxidation catalysis with molecular sacrificial oxidant such as oxone 

(KHSO5), NaIO4, or cerium ammonium nitrate (CAN, (NH4)2[Ce(NO3)6]) unveiled a prominent 

role of the sacrificial oxidation,[38] and catalyst performance varies considerably when 

modulating the terminal oxidant from e.g. NaIO4 to CAN.[39,40] This variation has been 

attributed in parts to the fact that some oxidants such as oxone or NaIO4 are also oxygen 

donors,[38] and in other parts to direct interactions between the metal center and the oxidant,[41,42] 

which limits the usefulness of the oxidant as a proxy to short-cut the water reduction cycle. 

In an actual water splitting device, the hole injection into the water oxidation catalyst will be 

coupled with electron injection to the water reduction catalyst in a closed loop. Such charge 

separation is most conveniently imparted by a (photo)electrode, and therefore, catalyst 

performance under electrochemical oxidation will be essential.[43] When considering the 

distinct role established for various sacrificial oxidants, it seems unclear whether the catalytic 

activity of a given catalyst in the presence of a molecular oxidant is correlated to water oxidation 

activity under electrochemical conditions. We have therefore engaged in optimizing iridium 

complexes containing a N,C-bidentate chelating pyridyl-triazolylidene ligand as a lead 

structural motif, which have demonstrated previously outstanding molecular integrity under 

acidic conditions as well as excellent turnover numbers for CAN-mediated water 

oxidation.[26,27] Here we show that ligand modifications at both the pyridyl and the carbenic[44–

47] triazolylidene site allows the catalytic activity of the iridium center to be rationally tailored 

for CAN-driven water oxidation. However, the catalytic performance mediated by this 

sacrificial oxidation does not correlate with the performance in electrochemical water oxidation 

and distinctly different orders of activity have been established. This divergence suggests that 

caution is needed when benchmarking iridium catalysts by chemical oxidants for water 

oxidation catalysis. This conclusion is supported by a previous study on manganese oxides for 

water oxidation.[48] and complements related work on the Crabtree-Brudvig Ir(pyalk) system.[49]  
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Results and discussion 

 

1. Synthesis and characterization of a series of pyridyl-triazolylidene iridium complexes 

with different substitution patterns 

Functionalization of the pyridyl-carbene ligand on both the carbene and the pyridyl units was 

facilitated by the functional group tolerance of the [3+2] cycloaddition of alkynes and azides,[50–

52] and the commercial availability of various alkynes and substituted 2-bromopyridines. These 

bromopyridines were readily converted to the pyridyl azides 1 via a copper-catalyzed 

substitution with NaN3 (Scheme 1). Subsequent copper-catalyzed “click” cycloaddition formed 

the triazoles 2–4, which were alkylated selectively at the N3 position in high yields by using 

MeOTf, thus affording the pyridyl-triazolium salts 5–7 as carbene ligand precursors.[53–58] A 

variety of functional groups were incorporated to probe their effect on catalytic water oxidation. 

Specifically, different electron donating groups were installed onto the pyridyl ring in order to 

stabilize the critical high-valent iridium transition states,[33] including –OMe, –tBu or –NMe2 

groups in 4-position, and a –OMe group in 5-position (5b–e). The triazole heterocycle was 

modulated by incorporating a –COOEt group at C4 position as a functional group (6a–c), which 

after hydrolysis has the potential to engage in reversible (de)protonation to facilitate electron-

coupled proton transfer processes.[59–61] The ester functionality offers a reference to distinguish 

electronic withdrawing properties of the carboxylate group from proton shuttling effects of the 

–COOH unit, which are blocked with the ester unit. Complementary, an alkoxy substituent was 

introduced at the triazole (7) as a functional group that serves as electron donor and potential 

hydrogen bond acceptor,[62] and after dealkylation, as proton shuttle.[63,64] These modifications 

gave access to a range of ligands with different electronic properties, demonstrating the 

flexibility of triazole-derived carbene precursors.  

 
Scheme 1. Synthesis of the triazolium salts (5a–e, 6a–c, 7) and iridium complexes (8a–e, 9a–c, 10, 11 and 12). 
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Metalation of the triazolium salts 5–7 was accomplished upon reaction with [IrCp*Cl2]2 in 

toluene at elevated temperatures in the absence of a base. These conditions induced triazolium 

C–H bond activation via cyclometalation and afforded the mesoionic carbene complexes 8–11 

as yellow solids that precipitated from the reaction solution. While all complexes formed within 

1–2 days, complex 9b with an ester functionality and –OMe substituent in the pyridyl 5-position 

reacted much slower and required 6 days. The absence of any additives for the metalation is 

advantageous in the presence of functional groups on the ligands, as for example strong bases 

would induce ester cleavage. However, we noted that the formation of complex 10 with an 

ethoxy-substituent on the triazolylidene was accompanied by partial ether hydrolysis, affording 

complex 11 with an –OH substituent on the triazolylidene as a minor product (approximately 

10%). Complex 11 is the first N-heterocyclic carbene with a hydroxide adjacent to the carbenic 

carbon, a design that is not conceivable for example in imidazolium-derived Arduengo carbenes 

due to the lability of the N–O bond. Furthermore, complexes 12a–c with a pendant carboxylic 

acid unit were obtained by ester hydrolysis from the corresponding complexes 9a–c using 

methanolic LiOH (Scheme 1). All complexes 8–12 were completely air and moisture stable and 

were purified via standard column chromatography over silica in moderate to high yield.  

 

NMR characterization. All complexes were fully analysed by 1H and 13C NMR spectroscopy 

and showed the expected pyridyl and triazolylidene signal patterns. To compare the effect of 

the donor groups on the triazolylidene and on the pyridyl ligand, it is instructive to compare 

series of complexes that are comprised of an identical substitution pattern on one of the two 
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heterocycles while the functionality on the other heterocycle is varied. For example, the series 

of complexes 8b, 9b, 10, 11, and 12b all feature the same 5-methoxy-substituted pyridyl unit, 

but different substituents on the triazole heterocycle, and the series of complexes 8a, 8c–e all 

feature the same triazolylidene ring, but different functional groups on the 4-substituted pyridyl 

unit (Fig. 1). 

 

 
Figure 1. Complexes with a) unfunctionalized pyridyl and different groups on the triazolylidene, b) with 5-OMe 

pyridyl and functionalized triazolylidene, c) with 4-OMe pyridyl and functionalized triazolylidene, and d) with 

unfunctionalized triazolylidene and variable substituents at the pyridyl para position. 

 

Modification of the substituent R on the triazolylidene unit has an obvious effect on the 

electronic configuration of the carbene heterocycle as inferred from the gradual shift of the 

NCH3 resonance from low field (dH = 4.56 for R = COOH, COOEt) continuously to higher field 

for the unsubstituted complex 8b (dH = 4.45 for R = H) and even more pronounced for electron-

donating substituents in 10 and 11 (dH = 4.20 for R = OEt, OH). No such correlation was 

observed for the proton resonances attributed to the pyridyl and Cp* units. The 13C NMR 

chemical shift of the metal-bound carbenic resonance appears at rather high field with the 

OH/OEt substituents (dC = 138) compared to the unsubstituted and carboxylate-functionalized 

derivatives (dC = 153 for 8b and 12b). The ester group induced the most deshielded resonance 

in this series (dC = 158 for 9b). While the NCH3 group provides an useful probe for inductive 

effects, the 13C NMR resonance shifts obviously combine mesomeric and inductive effects. The 

absence of any clear correlation between electronic properties of the substituents and resonance 

frequencies of the carbenic carbon illustrate the difficulties in using 13C NMR shifts to correlate 

electronic properties of N-heterocyclic carbenes.[65,66] 

Similarly, modification of the pyridyl substituent R’ had only very limited effects on the 

adjacent heterocycle. Variation of R’ from H to tBu, OMe, and NMe2 resulted in a small shift 

of the triazolylidene C4-bound proton resonance (dH 8.16 for 8a vs 8.17, 8.15, and 8.07 for 8c–

e, all in CD3CN), which correlates reasonably with the Hammett parameter of the donor group 
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(smeta = +0.12 for OMe, –0.10 for tBu, and –0.16 for NMe2).[67] with the increasing donor 

properties of R’. The carbenic resonance is not affected and appears for all complexes 8c–e at 

157 ppm. Local effects are obviously stronger on the pyridine ring itself, resulting in shift 

differences between 8a and 8e of more than 1 ppm.  

 

Structural characterization in the solid state. The solid state structures of complexes 8–12 

were determined by single crystal X-ray diffraction analyses and confirmed the connectivity 

pattern deduced from NMR spectroscopy. All complexes show the typical three-legged piano-

stool geometry around the iridium center as expected for this type of half-sandwich iridium 

complexes.[68–70] Representative molecular structures of complexes 8b, 9a–b and 10 are shown 

in Figure 2 (see Supporting Information for the structures of complexes 8d, 8e, 9c, 11, 12a, and 

12b). Selected bond lengths and angles are listed in Table 1. Bond lengths and angles around 

the iridium center are unsurprising for complexes 8b, 9a–b (Table 1) and also for all structures 

reported in the supporting information, revealing no significant differences to reported 

triazolylidene iridium(III) complexes.[68–70] In contrast, the bonding in complex 10 deviates 

considerably. In particular the carbene–iridium bond is unusually long (Ir–Ctrz = 2.19(1) Å, cf 

2.02(1) Å in the other complexes). This large distance is counterbalanced by much shorter 

bonds to all the other ligands, in particular to the chloride (Ir–Cl = 2.27(1) Å in 10 vs 2.40(1) 

Å usually observed), and to the Cp* ligand, which is about 0.1 Å closer (Ir–Cpcentr = 1.72(1) vs 

averaged 1.82(1) Å). Furthermore, it is worth noting that the Ctrz–Ctrz bond in complex 10 is 

remarkably long, 1.480(1) Å, indicative of a single bond rather than the typically observed 

1.37–1.39 Å for this formally conjugated bond. While the Ctrz–OOEt distance of 1.34(1) Å is 

similar to other aryl–O bonds (e.g. 1.35(1) Å in complexes 8b and 9b), the pyridyl C–OMe 

bond is considerably stretched with 1.45(1) Å. Even though the bonding parameters of complex 

10 deviate considerably from average, we note that complex 11 with an –OH substituent does 

not show similar behavior and the bond lengths and angles are commensurate to the metrics 

typically observed in such iridium complexes. Therefore, the deviations cannot be attributed to 

the presence of the oxo substituent but may be a curiosity, possibly induced by packing 

effects.[69] 
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Figure 2. Schematic drawing and ORTEP plots for complexes 8b, 9a, 9b and 10 (50% probability, H atoms, non-

coordinating anions, co-crystallized solvent molecules, and second independent molecule of 10 omitted for 

clarity).  

 

Table 1. Selected bond lengths (Å) and angles (°) for complexes 8b, 9a, 9b and 10 

 8b 9a 9b 10 a) 

Ir–Npy 2.123(4) 2.1204(15) 2.123(3) 2.091(8) 

Ir–Ctrz 2.026(5) 2.0198(17) 2.025(4) 2.185(9) 

Ir–Cp*(cent) 1.802(3) 1.811(1) 1.818(1) 1.725(4) 

Ir–Cl 2.4092(13) 2.4094(4) 2.3959(4) 2.275(2) 

Ctrz–Ctrz 1.377(7) 1.391(2) 1.383(5) 1.480(13) 

Ctrz–Ir–Npy 76.67(18) 77.25(6) 77.41(14) 78.0(4) 
a) Bond lengths (Å) and angles (°) for second independent complex molecules in the unit cell are identical within 

esds. 

 

 

2. Chemical water oxidation using cerium(IV) as sacrificial oxidant 

We investigated the performance of these functionalized carbene iridium complexes in water 

oxidation catalysis, firstly chemically driven by using cerium ammonium nitrate (CAN) as 

sacrificial oxidant.[38] Reactions were run initially at a 7,200:1 CAN/iridium ratio (0.37 M 

CAN) and were quantified by manometry and GC-MS.[71] All complexes 8–12 showed 

appreciable activity and high robustness under these conditions, reaching the theoretical limit 

of oxygen production within about 5 h (Fig. 3a). However, a closer inspection reveals distinct 

trends in activity.  

The addition of different electron donating groups (–NMe2, –tBu, –OMe) either at C(4) or C(5) 

position of the pyridyl unit consistently enhanced the catalytic activity of the complexes 
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compared to the ones bearing unmodified pyridine (entry 1 vs 2–5; entry 6 vs 8, 9; entry 11 vs 

12; Table 2, Fig. 3b). The effect is considerable, for example complex 9b with a –OMe group 

at the pyridyl C(5) has a 3-fold higher turnover frequency than the parent complex 9a (TOFmax 

1200 vs 390 h–1, entry 6 vs 7). These substitution changes afford TOFs as high as 1500 h–1 for 

complex 8b containing a OMe group meta to the iridium-bound pyridyl nitrogen. 

 

 

Table 2. Catalytic water oxidation with iridium complexes 8–12 a) 

Entry Complex R’ (pyr) R (trz) Conc [µM] TON TOFmax [h–1] 

1   8a H H 50.1 1920 700 

2   8b 5-OMe H 49.2 1980 1500 

3   8c  4-OMe H 50.9 1850 800 

4   8d  4-tBu H 49.1 1860 540 

5   8e  4-NMe2 H 50.8 1850 1200 

6   9a  H COOEt 49.7 1800 390 

7   9b  5-OMe COOEt 49.3 1900 1200 

8   9c  4-OMe COOEt 50.1 1840 460 

9 10 5-OMe OEt 50.3 1920 2500 

10 11 5-OMe OH 49.8 1920 2200 

11 12a  H COOH 49.9 1740  230 

12 12c  4-OMe COOH 49.5 1780   350 
a) Reaction medium: 0.37 M CAN in 10 mL 1M HNO3 (max O2 = 1.0 mmol) 

 

 

 
Figure 3. a) Oxygen evolution traces for complexes 8b, 8c, 9c, 10 and 11 as representative complexes of the 

series; b) and time-dependent variation of oxygen evolution rates (right). 

 a)                                                                            b) 
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Modification of the triazolylidene substituents reveals that –COOEt, –COOH groups 

consistently decrease catalytic activity (entry 1 vs 6, 11), with complex 9a containing a COOEt 

group performing slightly better than complex 12a with a COOH substituent (TOFmax = 390 vs 

230 h–1, compare 700 h–1 for benchmark complex 8a). A similar ca. 100 h–1 difference in 

TOFmax was also observed when the pyridine was modified with a methoxy group (entry 8 vs 

12), although the incorporation of the OMe group increased the overall activity compared to 

the unfunctionalized pyridine complexes. These results demonstrate that the COOH group on 

the triazole heterocycle does not impart any beneficial proton shuttling function that might 

enhance the catalytic activity of these complexes, presumably because the highly acidic reaction 

conditions prevent (reversible) deprotonation of this benzoic acid-like COOH group. Instead, 

the electron-withdrawing character of this group prevails and leads to a decrease in catalytic 

water oxidation activity. In agreement with this predominantly electronic role of the 

triazolylidene substituent, the introduction of an electron-donating –OEt or –OH substituents 

enhanced the catalytic activity substantially, reaching turnover frequencies of 2500 and 2200 

h–1 (entries 9, 10). This is a substantial increase compared to the TOFmax of 1500 h–1 for the 

corresponding complex 8b with an unsubstituted triazolylidene unit (entry 2). These rates are 

higher than that of most iridium-based water oxidation catalysts which typical range from 700–

1500 h–1, though less active than the fastest known iridium-based catalysts (TOFmax 6,000–

10,000 h–1).[37,39] Most notably, however, the activity of these pyridyl-triazolylidene iridium 

complexes is rationally tunable by modulating the donor properties of both the pyridyl and the 

triazolylidene ligand units, indicative of a catalytically active species that comprises the 

pyridyl-triazolylidene ligand bound to the iridium center. Moreover, the correlation of turnover 

frequencies with ligand donor properties strongly suggests a turnover-limiting step that 

involves the build-up of positive charge, e.g. strongly donating ligands facilitate the 

accessibility of a high-valent iridium species such as an iridium(V)=O complex or an 

iridium(IV)–oxyl species as critical intermediates en route to O–O bond formation.  

Monitoring the oxygen evolution rates over time reveals minor induction times for some of the 

iridium complexes. Variable activity in the low turnover regime is demonstrated when plotting 

the initial 15 min of water oxidation (Fig. 4) for selected complexes 8–10. This selection 

includes benchmark compound 8a without any functionality, 9a as relatively low-performing 

catalyst due to the electron-withdrawing substituent on the triazole, complexes 8b and 9b which 

contain an electron-donating pyridyl substituent imparting intermediate activity, as well as 
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complex 10 with two electron-donating substituents and revealing the highest activity in this 

series. 

The initial activity reflects some of the long-term trend reasonably well. Complex 10 shows 

essentially no induction period and assumes highest activity of the series immediately with 

induction times of a few seconds at best. Complex 8b is turning over slightly better than the 

other complexes of this set with noticeable O2 evolution starting after about 180 seconds (Fig. 

4). In contrast, complexes 8a and 9a–b show only poor activity in this early time regime, in 

agreement with the low initial TOF noted earlier (cf. Fig. 3b). The very low turnovers observed 

for these complexes in the first 15 min (TOF < 10 h–1) suggest that catalyst activation is 

relatively slow for these complexes (e.g. TOFmax of 9b = 1200 h–1). 

 

 
Figure 4. Oxygen evolution traces for the initial 15 min of chemical water oxidation for complex 8a, 8b, 9a, 9b, 

and 10, indicating an enhanced activity of 8b, and considerably enhanced activity of 10 at initial reaction times. 

 

 

3. Electrochemical Water Oxidation 

Water oxidation was expanded towards electrochemical water oxidation catalysis. Based on 

CAN results, a specific set of complexes was chosen for these experiments including complex 

9a as relatively low-performing catalyst due to the electron-withdrawing substituent on the 

triazole, complexes 8b, and 9b which contain an electron-donating substituent and show 

intermediate activity, and complex 10 with two electron-donating substituents and revealing 

highest activity in this series with a TOFmax that is about 6 times higher than that of 9a (cf Table 
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1). In order to facilitate comparison, all electrochemical experiments were carried out at the 

same temperature and pH as applied in CAN-driven water oxidation. 

Figure 5 shows the cyclic voltammetry measurements for 0.5 mM solutions of complexes 8b, 

9a, 9b and 10 at an ITO electrode. Experiments using a gold electrode gave identical results, 

indicating no major role of the nature of the electrode. All complexes gave rise to a catalytic 

current that started at around 1.8 V vs RHE. The similar behavior of complexes 9a and 9b 

suggests that modifications on the pyridine ring does not have a direct effect on the catalytic 

activity in electrochemical water oxidation. Complex 8b showed by far the highest catalytic 

current followed by 9a and 9b and 10 shows the least catalytic activity. The catalytic activity 

of the catalysts, and in particular in case of complex 8b, increased significantly over time.  

 
a)

 

   b)

  
Figure 5. Overlaid CV plots of 0.5 mM solutions of 8b (red), 9a (purple), 9b (blue), and 10 (green) in 0.1 M 

HClO4, ν = 100 mV s-1 at an ITO working electrode (0.35 cm2). Shown are the voltammograms of the fifth scan 

(a) and the 100th scan (b). 

 

More detailed insights of catalytic water oxidation were obtained by chronoamperometry (CA) 

measurements with complexes 8b, 9a, 9b and 10 (Fig. 6). When a potential of 1.7 V vs RHE 

was continuously applied (Fig. 6a), all complexes showed a similar behavior with almost no O2 

produced, as concluded from the low current throughout the experiment. In contrast, upon 

application of a 1.8 V vs RHE (Fig. 6b), the current density increased substantially, in particular 

with complex 8b. The current increases gradually during the first 400 s after potential onset and 

reaches a plateau at about 120 µA, which is almost 10 times larger than the 12–14 µA current 

achieved by the other complexes of that series under identical conditions. Complex 10 displays 

a marginally higher activity initially compared to 9a and 9b, but this minor difference levels 

completely out after about 600 s, indicating similar electrocatalytic activity of these three 

samples.  
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a)

 

 
   b)

  
Figure 6. Chronoamperometry of 0.5 mM solutions of 8b (red), 9a (purple), 9b (blue) and 10 (green) in 0.1 M 

HClO4; a): A potential of 0.7 V was applied for 60 seconds, followed by 1.7 V for 900 seconds and 0.7 V for 60 

seconds; b): A potential of 0.7 V was applied for 60 seconds, followed by 1.8 V for 900 seconds and 0.7 V for 60 

seconds. 

 

The trend in activity observed for complexes 8b, 9a, 9b and 10 recorded by CA agrees well 

with the corresponding CV traces (cf Fig. 5). The CA experiments clearly show that the 

catalysts are activated rapidly when a potential of at least 1.8 V vs RHE is applied, while 

currents are mediocre at 1.7 V vs RHE. From Fig. 5, an onset potential of slightly less than 1.6 

V vs RHE is deduced. The activity trend extracted from these electrochemical water oxidation 

measurements is 8b >> 9a ~ 9b ~ 10, with 8b about one order of magnitude more active than 

the other three complexes. Interestingly, this trend is considerably different from that 

determined by CAN-mediated chemical water oxidation, which reveals an activity decrease 

along the series 10 > 8b ~ 9b > 9a for TOFmax, and 10 > 8b > 9a ~ 9b for the initial TOF during 

the first 15 min, i.e. the time frame of the electrochemical experiments. This discrepancy 

strongly suggests diverging activation pathways and different active species in CAN-driven and 

electrochemical water oxidation. Because of their digressing behavior under different water 

oxidation conditions, complexes 8b and 10 as the most active complexes in electrochemical 

and CAN-mediated water oxidation, respectively, were further investigated by electrochemical 

quartz crystal microbalance (EQCM) and online electrochemical mass spectrometry (OLEMS) 

measurements. 

 

Electrochemical quartz crystal microbalance (EQCM) measurements. Measurements 

using an EQCM allows to detect any changes on the electrode surface resulting e.g. from 

deposition of a heterogeneous active layer on the electrode,[72–74] and has been successfully 

applied for investigating water oxidation catalysts.[24,43,75] In contrast to all other 
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electrochemical experiments, the electrode is not in a hanging meniscus configuration, but 

mounted at the bottom of the EQCM cell. As a consequence of this set-up, the electrode surface 

is about 7 times larger (0.35 cm2) than the electrode used in classical electrochemical 

experiments. The positioning of the electrode on the bottom of the cell increases the sensitivity 

for potential material deposition on the electrode due to gravity, whereas the larger electrode 

size affects diffusion patterns around the electrode. 

Cyclic voltammetry of complex 8b with an EQCM as electrode confirmed the constant current 

increases over time with a concerted shift of the onset potential to about 1.55 V vs RHE (Fig. 

7). The frequency of the EQCM signal increases steadily with increasing numbers of cycles, 

which would correspond to a decrease in mass of the electrode. A more reasonable explanation 

is that the hydrophobicity of the local environment of the working electrode increases due to 

the evolution of dioxygen, which results in a positive frequency shift of the QCM signal. While 

these measurements do not rigorously rule out some material deposition, it is worth noting the 

different behavior of complex 10 under identical conditions. Repetitive potential cycling does 

not result in a significant increase of current and hence catalytic activity, yet deposition of 

material on the electrode surface is clearly demonstrated by a considerable decrease of the QCM 

frequency. Deposition does, however, not result in an active layer, since also after several 

cycles, the onset current density around 1.6 V does not increases and is far lower than that of 

complex 8b. These experiments suggest formation of an active homogeneous species with 

complex 8b under electrochemical conditions, while complex 10 forms an inactive 

heterogeneous layer. This heterogeneous deactivation may rationalize the lower current density 

observed with complex 10 in chronoamperometry and contrasts the high activity of complex 

10 in CAN-mediated water oxidation.  
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Figure 7. Calculated mass change from EQCM (top) and CV traces (bottom) of 0.5 mM solutions of 8b (left) and 

10 (right) in 0.1 M HClO4 at 10 mV s–1 at a gold electrode (0.35 cm2). Black traces indicate the data of the first 

cycle between 1.2 and 2.0 V vs RHE, grey lines indicate subsequent 19 cycles.  

 

In a combined CA-EQCM experiment, the deposition of material was measured for continuous 

electrochemical water oxidation with complexes 8b and 10 at a fixed potential for 15 minutes 

(Fig. 8). As observed in regular CA measurements in a hanging meniscus configuration (cf Fig. 

6), neither of the two complexes showed any catalytic current when the potential was kept at 

1.7 V vs RHE and also no mass gain was detected. When the potential was raised to 1.8 V vs 

RHE, a catalytic current was observed for complex 10 which gradually increased over the full 

duration of the measurement to reach about 0.2 mA after 15 min. The current density is 

substantially higher for complex 8b (>1.0 mA) and was reached already after about 500 s and 

then plateaued at this level for the remaining 400 s. Associated with the gradually increasing 

catalytic current of complex 10, also the oscillation frequency of the EQCM changes and 

continuously increases, indicating a deposition of approximately 3 µg cm–2. Upon switching off 

the potential after 900 s, the mass gain reverts largely, suggesting a reversible change of the 

frequency and hence not a deposition of (typically irreversibly formed) heterogenized iridium 

oxide catalyst, which has been shown to be irreversibly deposited.24,75 This effect is even more 

pronounced for the electrocatalytically much more active complex 8b. When the potential is 

kept at 1.8 V vs RHE, significant amounts of deposition (6.5 µg cm–2) were concluded from the 

frequency changes, however, this mass gain is almost completely reversed when switching the 

potential back to 0.7 V vs RHE (>75% desorption). This behavior is not in agreement with 

decomposition or electrochemical formation of an (inorganic) heterogeneous layer such iridium 

oxide on the electrode, since electrochemical removal of iridium oxide is very difficult and does 

not occur at 0.7 V vs RHE. The increase in weight is therefore attributed to the physisorption 

of the catalytically active homogeneous species. Such a model also rationalizes the minor 

differences observed when comparing the experiments carried out in a hanging meniscus 

configuration vs a EQCM set-up. It is also interesting to note that the mass changes observed 

by CA-EQCM for complexes 8b and 10 differ by a factor 2, while the catalytic current is about 

5 times larger for 8b vs 10, which is not compatible with a direct correlation between deposited 

material and catalytic activity. 
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a)

    

b)

  
Figure 8. EQCM results from chronoamperometric measurements of complexes 8b (a) and 10 (b). Potential was 

held at 0.7 V (0–60 s), 1.7 V (grey, 60–960 s) or 1.8 V (red/blue, 60–960 s) and 0.7 V again (960–1020 s) for 0.5 

mM solutions of the corresponding complex 10 in 0.1 M HClO4 electrolyte solution at a gold electrode (0.35 cm2); 

all potentials vs RHE. 

 

Online electrochemical mass spectrometry (OLEMS) measurements. In addition to EQCM 

experiments to probe the homogeneous nature of the (modified) complexes, OLEMS[75–77] 

measurements were performed to provide access to real-time information about the gaseous 

products that are formed at the electrode surface. Since this technique combines classical 

electrochemical methods with on-line mass spectrometry, such tandem measurements also shed 

light on the onset potentials of these reactions and on possible decomposition pathways. Gas 

product measurement during a CV cycle revealed evolution of oxygen for both complexes 8b 

and 10 simultaneous to the increase of catalytic current above 1.8 V vs RHE (Fig. 9). Minute 

levels of CO2 were also detected, though the quantities were 2 orders of magnitude lower than 

oxygen. It is worth noting that CO2 formation commenced at about 200 mV earlier potential 

than oxygen evolution. These data are in agreement with (partial) Cp* oxidation as observed in 

related systems by NMR spectroscopy.[29–33] 
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Figure 9. Online spectrometric monitoring of the gas phase of solutions of complexes 8b (a) and 10 (b) by OLEMS 

upon electrochemical water oxidation induced by sweeping the potential from 1.4 to 2.0 V vs RHE (0.1 M HClO4 

solution; gold electrode, ν = 1 mV s−1). Top panel: CO2 evolution; middle panel: O2 evolution; bottom panel: linear 

sweep voltammogram. 

 

A combined chronoamperometric/OLEMS experiment of complex 8b at a fixed potential of 1.8 

V vs RHE shows an immediate evolution of dioxygen and indicates a ca. 300 mV overpotential 

with respect to the equilibrium potential of water (Fig. 10). The dioxygen trace plateaus already 

after 10 seconds, indicating saturation of the solution around the electrode and the OLEMS inlet 

(Fig. 10c). After saturation the oxygen levels appear to further increase, yet this is most likely 

due to violent bubble formation at the electrode, which gives rise the many spikes on the O2 

trace (Fig. 10a). Also, CO2 is formed immediately albeit at considerably lower levels compare 

to dioxygen and in contrast to dioxygen, the CO2 levels decreases over time. 

The chronoamperometric/OLEMS trace of complex 10 is remarkably different. The increase of 

the O2 levels at the very beginning is very slow and after 120 seconds the dioxygen levels are 

still increasing, suggesting that activation of the precatalyst to the active species is still taking 

place (Fig. 10b,d). In contrast to complex 8b the observed currents of complex 10 remain 

roughly a magnitude lower, even after 900 seconds, and formation of oxygen bubbles are never 

observed, neither in the OLEMS trace nor visibly. This behavior is in full agreement with the 

data from chronoamperometry, which reveal a 10-fold higher catalytic current of complex 8b 

compared to 10 (cf Fig. 6).[78]  

 



	 18	

 
Figure 10. Change of current density and gas evolution upon electrochemical water oxidation with complex 8b 

(a) and 10 (b) measured by OLEMS (0.05 cm2 gold electrode, 0.1 M HClO4 and 0.5 mM solution of iridium 

complex, potential at 0.7 V (0–60 s), 1.8 V (60–960 s), and 0.7 V (960–1020 s); all potentials vs RHE. Upper 

panel: O2 evolution; middle panel: CO2 evolution; lower panel: current. Magnifications of the first 60 seconds of 

reaction for 8b (c) and 10 (d). $ 

 

X-ray photoelectron spectroscopy. To unambiguously characterize the nature of the 

‘deposite’ observed during EQCM measurements, experiments were carried out to investigate 

the electrode surface when complex 8b was used for electrochemical water oxidation. The 

material on the electrode surface after combined CV- and CA-EQCM measurements was 

investigated ex situ by X-ray photoelectron spectroscopy (XPS).  

The XPS spectra in the Ir 4f region of the iridium deposits (Fig. 11) showed a signal at 62.4 eV 

which is typical for a molecular iridium(IV) species.[32,79,80] The observed binding energy is 

considerably lower than IrO2 systems, which are typically observed above 62.7 eV,[80,81] and 

higher than the binding energy of Ir2O3, which is found below 62.2 eV.[81,82] 
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Figure 11. XPS spectrum in the Ir 4f region of the powder complex 8b (red) and after 1 (blue), 3 (green), 5 (purple) 

and 10 minutes (black) chronoamperometry of 0.5 mM solutions of 8b in 0.1 M HClO4 at gold (0.35 cm2) 

electrodes. 

 

In the carbon 1s region, the XPS spectra kept the same signal at 285 eV from the beginning of 

the experiment and supports the integrity of the ligand skeleton (Fig. S28). In addition, a new 

signal at 288 eV appeared after 3 minutes at an energy that may point to a carbonyl group due 

to C oxidation on the ligand. This observation may be rationalized by a stepwise oxidation of 

e.g. the Cp* ligand as demonstrated earlier by Macchioni and coworkers.[29,30] Finally, the N 1s 

region showed that the nitrogen portion of the ligand remained relatively unchanged throughout 

the experiment, indicating that the deposited material still contains the triazolylidene-pyridyl 

ligand framework. However, the amount of iridium appears to build up over time, whereas the 

amounts of carbon and nitrogen increase to a much lesser extent. Apparently, some of the 

pyridyl-triazolylidene ligand is lost during prolonged amperometry measurements. 

 

 

Conclusions 
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We have reported new mesoionic carbene iridium complexes, which are efficient chemical and 

electrochemical water oxidation catalysts. Here, we show how simple ligand modifications 

modulate the catalytic activity, which strongly indicates a catalytically active species in which 

the C,N-bidentate coordinating carbene ligand remains coordinated to the iridium center. Most 

remarkably, the correlation between the catalyst structure and the activation rate of the catalysts 

differs considerably between chemical oxidation with CAN and upon electrochemical 

oxidation. While for CAN-driven water oxidation, electron donating groups on both the 

triazolylidene and pyridyl ligand units enhance catalytic activity, electrochemical catalysis is 

highest when the triazolylidene is unsubstituted. The relative activity of 10 as the best 

performing catalyst in CAN-driven processes vs 8b, the best electrocatalytic system, reveals a 

significant divergence with a 2:1 activity ratio in CAN-mediated oxidation compared to a 1:5 

ratio in electrochemical water oxidation. While this work provides support for a similar 

activation of the system via Cp* degradation irrespective of the oxidation method, it is likely 

that the presence of cerium affects the catalytically active species and hence leads to a different 

resting state or a different electron transfer mechanism than electrochemical oxidation. Our 

work indicates that it is very difficult to extrapolate catalytic activity trends gained from 

experiments using a sacrificial oxidant to water oxidation activity at electrodes. While 

sacrificial oxidants have often been used for a primary assessment of the quality and efficiency 

of catalysts, this work here demonstrates that such evaluations need to be interpreted with 

caution. In particular when considering that ultimately, a device for water splitting will be 

comprised of a (photovoltaic) electrochemical cell, catalyst evaluation at electrodes will need 

to be evaluated at early stages to not discard active catalysts such as 8b that show only mediocre 

performance in the chemically driven water oxidation but provide excellent electrochemical 

catalysts. 

 

 

Experimental 

General: The metalation reactions were carried out under nitrogen atmosphere using standard 

Schlenk techniques, and all the reagents and solvents were used as obtained from commercial 

sources. The precursor compounds 2-azidopyridine (1a),[83] 1-(2-pyridyl)-1,2,3-triazole (2a),[84] 

5-methoxy-2-(1H-1,2,3-triazol-1-yl)-pyridine (2b),[84] 4-methoxy-2-(1H-1,2,3-triazol-1-yl)-

pyridine (2c),[84] 4-N, N-dimethyl-2-(1H-1,2,3-triazol-1-yl)pyridinamine (2e),[84] ethyl 1-(2-

pyridyl)-1H-1,2,3-triazole-4-carboxylate (3a),[85] triazolium salts 5a,[69] and 6a,[86] as well as 

iridium complex 8a,[69] and [IrCp*Cl2]2 
[87] were prepared according to literature procedures. 
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All other ligand precursors are described in the supporting information. Unless specified 

otherwise, NMR spectra were recorded at 25 ºC on Varian spectrometers operating at 300, 400 

or 500 MHz (1H NMR), and 100 MHz (13C{1H} NMR) respectively or on Bruker spectrometers 

operating at 300 or 400 MHz (1H NMR) and 75 or 100 MHz (13C{1H} NMR) respectively. 

Chemical shifts (δ in ppm, coupling constants J in Hz) were referenced to residual solvent 

signals (1H, 13C). Assignments are based on homo- and heteronuclear shift correlation 

spectroscopy. All complexes show a quartet around 120 ppm in the 13C NMR spectrum due to 

the OTf counterion. Elemental analyses were performed by the microanalytical laboratories of 

University College Dublin and the University of Bern. 
 

General procedure for the synthesis of the complexes 8b, 9a–c, 10 and 11: Compound 5b, 

6a–c, and 7 (1 eq) and [IrCp*Cl2]2 (0.5 eq) were suspended in degassed toluene (15 mL) and 

stirred at 120 ºC for the indicated time. The solvent was removed and the residue was dissolved 

in CH3CN and layered with Et2O to precipitate a yellow solid, which was dried under reduced 

pressure affording the complex (8b, 9a–c, 10 and 11). The residue was purified via column 

chromatography (SiO2; CH2Cl2: acetone). 

General procedure for the synthesis of the complexes 8c–e: Compound 5c–e, (1 eq) and 

[IrCp*Cl2]2 (0.5 eq) were solved in degassed toluene (5 mL) and heated in a closed vial at 

140 °C for 4 h. After cooling to ambient temperature, the suspension was filtered through Celite 

and the insoluble parts were solved in CH3CN (5 mL). The complex was precipitated from the 

solution by addition of Et2O (100 mL), collected by decantation and dried under reduced 

pressure to yield the complex (8c–e). 

 

Complex 8b. Reaction of 5b (145 mg, 0.43 mmol) and [IrCp*Cl2]2 (170 mg, 0.21 mmol) was 

stirred for 48 h, according to the general procedure gave 8b as a yellow solid (250 mg, 84%). 
1H NMR (400 MHz, CDCl3): δ = 8.37 (s, 1H, CtrzH), 8.25 (d, 4JHH = 2.7 Hz, 1H, CpyH), 8.13 

(d, 3JHH = 9.1 Hz, 1H, CpyH), 7.71 (dd, 3JHH = 9.1 Hz, 4JHH = 2.7 Hz, 1H, CpyH), 4.45 (s, 3H, 

NCH3), 4.03 (s, 3H, OCH3), 1.84 (s, 15H, CCp*H3). 13C{1H} NMR (100 MHz, CDCl3): δ = 

157.8 (Cpy–OMe), 153.6 (Ctrz–Ir), 143.9 (Cpy–Ntrz), 139.2 (CpyH), 133.4 (CtrzH), 125.3 (CpyH), 

115.1 (CpyH), 91.7 (CCp*), 57.0 (OCH3), 40.2 (NCH3), 9.4 (CCp*H3). Anal. Calcd for 

C20H25ClF3IrN4O4S (702.17): C, 34.21; H, 3.59; N, 7.98. Found: C, 34.13; H, 3.60; N, 8.05. 

HR-MS (CH3CN): m/z calculated for C19H25ON4ClIr [M–OTf]+ = 553.1341; found, 553.1333. 
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Complex 8c. Reaction of 5c (50 mg, 0.147 mmol) and [IrCp*Cl2]2 (60 mg, 0.074 mmol) was 

stirred for 4 h at 140 °C according to the general procedure yielding 8c as a yellow solid (45 mg, 

86%). 1H NMR (600 MHz, CD3CN): δ = 8.48 (d, 3JHH = 6.6 Hz, 1H, CpyH), 8.15 (s, 1H, CtrzH), 

7.67 (d, 4JHH = 2.7 Hz, 1H, CpyH), 7.22 (dd, 3JHH = 6.6 Hz, 4JHH = 2.7 Hz, 1H, CpyH), 4.33 (s, 

3H, NCH3), 4.07 (s, 3H, OCH3), 1.77 (s, 15H, CCp*H3). 13C{1H} NMR (125 MHz, CD3CN): δ 

= 170.8 (Cpy–OMe), 156.7 (Ctrz–Ir), 153.2 (CpyH), 152.4 (Cpy–Ntrz), 133.7 (CtrzH), 114.9 (CpyH), 

100.8 (CpyH), 92.0 (CCp*), 58.3 (OCH3), 40.7 (NCH3), 9.4 (CCp*H3). Anal. Calcd for 

C20H25ClF3IrN4O4S (702.17): C, 34.21; H, 3.59; N, 7.98. Found: C, 34.01; H, 3.34; N, 7.90. 

HR-MS (CH3CN): m/z calculated for C19H25ON4ClIr [M–OTf]+ = 553.1341; found, 553.1348. 

 

Complex 8d. Reaction of 5d (20 mg, 0.055 mmol) and [IrCp*Cl2]2 (22 mg, 0.028 mmol) was 

stirred for 4 h at 140 °C according to the general procedure yielding 8d as a yellow solid (35 mg, 

87%). 1H NMR (400 MHz, CD3CN): δ = 8.61 (dd, 3JHH = 6.1 Hz, 5JHH = 0.5 Hz, 1H, CpyH), 

8.17 (s, 1H, CtrzH), 8.15 (dd, 4JHH = 2.0 Hz, 5JHH = 0.5 Hz, 1H, CpyH), 7.71 (dd, 3JHH = 6.1 Hz, 
4JHH = 2.0 Hz, 1H, CpyH), 4.35 (s, 3H, NCH3), 1.78 (s, 15H, CCp*H3), 1.42 (s, 9H, CH3). 13C{1H} 

NMR (100 MHz, CD3CN): δ = 168.7 (CtBu–CH3), 156.3 (Ctrz–Ir), 152.3 (CpyH), 151.0 (Cpy–

Ntrz), 133.6 (CtrzH), 125.7 (CpyH), 112.0 (CpyH), 92.3 (CCp*), 40.7 (NCH3), 36.8 (Cpy–tBu), 30.3 

(CH3), 9.4 (CCp*H3). Anal. Calcd for C23H31ClF3IrN4O3S (728.25): C, 37.93; H, 4.29; N, 7.69. 

Found: C, 38.06; H, 4.11; N, 7.97. HR-MS (CH3CN): m/z calculated for C22H31N4ClIr [M–

OTf]+ = 579.1867; found, 579.1854. 

 

Complex 8e. Reaction of 5e (50 mg, 0.142 mmol) and [IrCp*Cl2]2 (56 mg, 0.070 mmol) was 

stirred for 4 h at 140 °C according to the general procedure yielding 8e as a yellow solid (70 mg, 

70%). 1H NMR (400 MHz, CD3CN): δ = 8.10 (d, 3JHH = 7.0 Hz, 1H, CpyH), 8.07 (s, 1H, CtrzH), 

7.19 (d, 4JHH = 2.9 Hz, 1H, CpyH), 6.78 (dd, 3JHH = 7.0 Hz, 4JHH = 2.9 Hz, 1H, CpyH), 4.30 (s, 

3H, NCH3), 3.19 (s, 6H, N(CH3)2), 1.76 (s, 15H, CCp*H3). 13C{1H} NMR (100 MHz, CD3CN): 

δ = 157.4 (Cpy–NMe2), 155.8 (Ctrz–Ir), 151.0 (Cpy–Ntrz), 150.4 (CpyH), 133.3 (CtrzH), 110.2 

(CpyH), 95.6 (CpyH), 91.4 (CCp*), 40.5 (NCH3), 40.3 (N(CH3)2), 9.4 (CCp*H3). Anal. Calcd for 

C21H28ClF3IrN5O3S (715.21): C, 35.27; H, 3.95; N, 9.79. Found: C, 35.61; H, 3.65; N, 9.79. 

HR-MS (CH3CN): m/z calculated for C20H28N5ClIr [M–OTf]+ = 566.1663; found, 566.1635. 

 

Complex 9a. Reaction of 6a (200 mg, 0.52 mmol) and [IrCp*Cl2]2 (210 mg, 0.26 mmol) was 

stirred for 24 h, according to the general procedure gave 9a as a yellow solid (268 mg, 70%). 
1H NMR (400 MHz, CDCl3): δ = 8.65 (d, 3JHH = 5.5 Hz, 1H, CpyH), 8.32 (d, 3JHH = 8.0 Hz, 1H, 
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CpyH), 8.17 (td, 3JHH = 8.0 Hz, 4JHH = 1.4 Hz, 1H, CpyH), 7.63 (ddd, 3JHH = 8.0 Hz, 3JHH = 5.5 

Hz, 4JHH = 1.4 Hz, 1H, CpyH), 4.59 (s, 3H, NCH3), 4.53 (m, 2H, OCH2Me), 1.74 (s, 15H, 

CCp*H3), 1.48 (t, 3JHH = 7.1 Hz, 3H, OCH2CH3). 13C{1H} NMR (100 MHz, CDCl3): δ = 160.3 

(Ctrz–Ir), 157.2 (C=O), 150.5 (CpyH), 150.4 (Cpy–Ntrz), 142.0 (CpyH), 136.7 (Ctrz–COOEt), 

127.0 (CpyH), 115.3 (CpyH), 92.8 (CCp*), 63.2 (OCH2Me), 43.0 (NCH3), 14.4 (OCH2CH3), 9.3 

(CCp*H3). Anal. Calcd for C22H27ClF3IrN4O5S (744.20): C, 35.51; H, 3.66; N, 7.53. Found: C, 

35.33; H, 3.81; N, 7.56. HR-MS (CH3CN): m/z calculated for C21H27O2N4ClIr [M–OTf]+ = 

595.1446; found, 595.1460. 

 

Complex 9b. Reaction of 6b (235 mg, 0.57 mmol) and [IrCp*Cl2]2 (226 mg, 0.28 mmol) was 

stirred for 6 days, according to the general procedure gave 9b as a yellow solid (341 mg, 78%). 
1H NMR (400 MHz, CDCl3): δ = 8.26 (dd, 3JHH = 8.9 Hz, 1H, CpyH), 8.26 (dd, 4JHH = 2.7 Hz, 

1H, CpyH), 7.70 (dd, 3JHH = 8.9 Hz, 4JHH = 2.7 Hz, 1H, CpyH), 4.57 (s, 3H, NCH3), 4.52 (m, 2H, 

OCH2Me), 4.02 (s, 3H, OCH3), 1.78 (s, 15H, CCp*H3), 1.48 (t, 3JHH = 7.1 Hz, 3H, OCH2CH3). 
13C{1H} NMR (100 MHz, CDCl3): δ = 158.4 (Ctrz–Ir), 158.0 (Cpy–OMe), 157.2 (C=O), 143.5 

(Cpy–Ntrz), 138.6 (CpyH), 136.5 (Ctrz–COOEt), 125.6 (CpyH), 115.7 (CpyH), 92.6 (CCp*), 63.1 

(OCH2Me), 57.0 (OCH3), 42.7 (NCH3), 14.4 (OCH2CH3), 9.2 (CCp*H3). Anal. Calcd for 

C23H29ClF3IrN4O6S (774.23): C, 35.68; H, 3.78; N, 7.24. Found: C, 35.50; H, 4.02; N, 6.91. 

HR-MS (CH3CN): m/z calculated for C22H29O3N4ClIr [M–OTf]+ = 625.1552; found, 625.1563. 

 

Complex 9c. Reaction of 6c (235 mg, 0.57 mmol) and [IrCp*Cl2]2 (226 mg, 0.28 mmol) was 

stirred for 48 h according to the general procedure gave 9c as a yellow solid (278 mg, 63%). 1H 

NMR (300 MHz, CDCl3): δ = 8.36 (d, 3JHH = 6.6 Hz, 1H, CpyH), 7.80 (d, 4JHH = 2.6 Hz, 1H, 

CpyH), 7.13 (dd, 3JHH = 6.6 Hz, 4JHH = 2.6 Hz, 1H, CpyH), 4.61 (s, 3H, NCH3), 4.55 (m, 2H, 

OCH2Me), 4.10 (s, 3H, OCH3), 1.77 (s, 15H, CCp*H3), 1.48 (t, 3JHH = 7.1 Hz, 3H, OCH2CH3). 
13C{1H} NMR (75 MHz, CDCl3): δ = 169.9 (Cpy–OMe), 160.5 (Ctrz–Ir), 157.2 (C=O), 151.6 

(Cpy–Ntrz), 150.4 (CpyH), 136.7 (Ctrz–COOEt), 115.0 (CpyH), 100.3 (CpyH), 92.3 (CCp*), 63.2 

(OCH2Me), 57.5 (OCH3), 42.9 (NCH3), 14.4 (OCH2CH3), 9.3 (CCp*H3). Anal. Calcd for 

C23H29ClF3IrN4O6S (774.23): C, 35.68; H, 3.78; N, 7.24. Found: C, 35.62; H, 3.47; N, 7.26. 

HR-MS (CH3CN): m/z calculated for C22H29O3N4ClIr [M–OTf]+ = 625.1552; found, 625.1582.  

 

Complex 10. Reaction of 7 (175 mg, 0.45 mmol) and [IrCp*Cl2]2 (180 mg, 0.23 mmol) was 

stirred for 24 h according to the general procedure gave 10 as a yellow solid (240 mg, 70%). 
1H NMR (400 MHz, CDCl3): δ = 8.23 (d, 4JHH = 2.7 Hz, 1H, CpyH), 8.22 (d, 3JHH = 9.1 Hz, 1H, 
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CpyH), 7.77 (dd, 3JHH = 9.1 Hz, 4JHH = 2.7 Hz, 1H, CpyH), 4.47 (m, 1H, OCH2Me), 4.28 (m, 1H, 

OCH2Me), 4.19 (s, 3H, NCH3), 4.02 (s, 3H, OCH3), 1.82 (s, 15H, CCp*H3), 1.46 (t, 3JHH = 7.1 

Hz, 3H, OCH2CH3). 13C{1H} NMR (100 MHz, CDCl3): δ = 158.0 (Cpy–OMe), 156.4 (Ctrz–

OEt), 144.2 (Cpy–Ntrz), 139.0 (CpyH), 138.0 (Ctrz–Ir), 125.6 (CpyH), 115.3 (CpyH), 91.5 (CCp*), 

74.8 (OCH2Me), 57.0 (OCH3), 35.5 (NCH3), 15.3 (OCH2CH3), 9.4 (CCp*H3). Anal. Calcd for 

C22H29ClF3IrN4O5S (746.22): C, 35.41; H, 3.92; N, 7.51. Found: C, 35.24; H, 3.96; N, 7.49. 

HR-MS (CH3CN): m/z calculated for C21H29O2N4ClIr [M–OTf]+ = 597.1603; found, 597.1616.  

 

Complex 11. A yellow solid precipitated in the solvent portion removed from the reaction of 

complex 10. This solid was complex 11 which contains a –OH group on the triazole (26 mg, 

8%). 1H NMR (400 MHz, CDCl3): δ = 8.26 (d, 4JHH = 2.6 Hz, 1H, CpyH), 8.04 (d, 3JHH = 8.9 

Hz, 1H, CpyH), 7.65 (dd, 3JHH = 8.9 Hz, 4JHH = 2.6 Hz, 1H, CpyH), 4.21 (s, 3H, NCH3), 4.02 (s, 

3H, OCH3), 1.87 (s, 15H, CCp*H3). 13C{1H} NMR (100 MHz, CDCl3): δ = 157.6 (Cpy–OMe), 

155.0 (Ctrz–OH), 144.8 (Cpy–Ntrz), 138.6 (CpyH), 137.1 (Ctrz–Ir), 125.0 (CpyH), 114.4 (CpyH), 

91.5 (CCp*), 56.9 (OCH3), 35.6 (NCH3), 9.6 (CCp*H3). Anal. Calcd for C20H25ClF3IrN4O5S 

(718.16): C, 33.45; H, 3.51; N, 7.80. Found: C, 33.40; H, 3.93; N, 7.73. HR-MS (CH3CN): m/z 

calculated for C19H25O2N4ClIr [M–OTf]+ = 569.1290; found, 569.1298. 

 

General procedure for the synthesis of the complexes 12a–c: 9a–c (1 eq) and lithium 

hydroxide monohydrate (2 eq), were dissolved in a mixture of MeOH and water (6 mL and 3 

mL). The reaction was stirred at room temperature for 3 h. 1 M HCl aqueous solution was added 

dropwise until pH = 3–5 was reached. The reaction was extracted with brine (2x 10 mL) and 

CH2Cl2 (5x 15 mL). The organic layer was dried over MgSO4 and the solvent was removed 

under reduced pressure. Residue was dissolved in CH2Cl2 and layered with Et2O to precipitate 

a yellow solid, which was dried under reduced pressure affording the complex (12a–c). 

 

Complex 12a. Reaction of 9a (130 mg, 0.17 mmol) and lithium hydroxide monohydrate (15 

mg, 0.35 mmol) according to the general procedure gave 12a as a yellow solid (95 mg, 78%). 
1H NMR (400 MHz, CDCl3): δ = 8.71 (d, 3JHH = 5.5 Hz, 1H, CpyH), 8.27 (m, 2H, CpyH), 7.75 

(m, 1H, CpyH), 4.59 (s, 3H, NCH3), 1.82 (s, 15H, CCp*H3). 13C{1H} NMR (100 MHz, CDCl3): 

δ = 160.0 (C=O), 155.3 (Ctrz–Ir), 151.0 (CpyH), 150.2 (Cpy–Ntrz), 142.3 (CpyH), 142.0 (Ctrz–

COOH), 127.5 (CpyH), 114.6 (CpyH), 92.5 (CCp*), 41.3 (NCH3), 9.5 (CCp*H3). Anal. Calcd for 

a mixture 1:1 complex with and without counterion C39H45Cl2F3Ir2N8O7S (1282.23): C, 36.53; 
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H, 3.54; N, 8.74. Found: C, 36.39; H, 3.84; N, 8.29. HR-MS (CH3CN): m/z calculated for 

C19H23O2N4ClIr [M–OTf]+ = 567.1133; found, 567.1126. 

 

Complex 12b. Reaction of 9b (130 mg, 0.17 mmol) and lithium hydroxide monohydrate (15 

mg, 0.35 mmol) according to the general procedure gave 12b as a yellow solid (90 mg, 72%). 
1H NMR (400 MHz, CDCl3): δ = 8.28 (d, 4JHH = 2.6 Hz, 1H, CpyH), 8.06 (d, 3JHH = 9.1 Hz, 1H, 

CpyH), 7.70 (dd, 3JHH = 9.1 Hz, 4JHH = 2.6 Hz, 1H, CpyH), 4.50 (s, 3H, NCH3), 4.01 (s, 3H, 

OCH3), 1.83 (s, 15H, CCp*H3). 13C{1H} NMR (100 MHz, CDCl3): δ = 160.0 (C=O), 157.5 (Cpy–

OMe), 150.2 (Ctrz–Ir), 146.1 (Ctrz–COOH), 144.2 (Cpy–Ntrz), 138.3 (CpyH), 125.4 (CpyH), 114.6 

(CpyH), 91.9 (CCp*), 57.0 (OCH3), 39.9 (NCH3), 9.4 (CCp*H3). Anal. Calcd for a mixture 1:1 

complex with and without counterion C41H49Cl2F3Ir2N8O9S (1342.28): C, 36.69; H, 3.68; N, 

8.35. Found: C, 36.86; H, 3.85; N, 8.31. HR-MS (CH3CN): m/z calculated for C20H25O3N4ClIr 

[M–OTf]+ = 597.1239; found, 597.1227.  

 

Complex 12c. Reaction of 9c (80 mg, 0.10 mmol) and lithium hydroxide monohydrate (10 mg, 

0.20 mmol) according to the general procedure gave 12c as a yellow solid (50 mg, 67%). 1H 

NMR (400 MHz, CDCl3): δ = 8.47 (d, 3JHH = 5.7 Hz, 1H, CpyH), 7.67 (s, 1H, CpyH), 7.29 (d, 
3JHH = 5.7 Hz, 1H, CpyH), 4.58 (s, 3H, NCH3), 4.12 (s, 3H, OCH3), 1.80 (s, 15H, CCp*H3). 
13C{1H} NMR (100 MHz, CDCl3): δ = 169.7 (Cpy–OMe), 160.0 (C=O), 156.0 (Ctrz–Ir), 151.4 

(Cpy–Ntrz), 151.3 (CpyH), 141.4 (Ctrz–COOH), 114.5 (CpyH), 100.3 (CpyH), 92.0 (CCp*), 57.7 

(OCH3), 41.4 (NCH3), 9.5 (CCp*H3). Anal. Calcd for C21H25ClF3IrN4O6S (746.17): C, 33.80; H, 

3.38; N, 7.51. Found: C, 34.13; H, 3.52; N, 7.54. HR-MS (CH3CN): m/z calculated for 

C20H25O3N4ClIr [M–OTf]+ = 597.1239; found, 597.1247. 

 

Catalytic water oxidation using CAN: An aqueous solution of the iridium complex was 

injected into a 20 mL EPA vial sealed with a customized cap containing 10 mL of 0.37 M CAN 

solution buffered in 1M HNO3. O2 evolution was monitored with pressure transducers and the 

end point oxygen content in the headspace of the reaction was verified by GC analysis. 

 

Electrochemical methods: All electrochemical and EQCM experiments were performed on 

an Autolab PGSTAT 128N. All electrochemical experiments were performed in one-

compartment 25 ml glass cells in a three-electrode setup, using an ITO working electrode (0.35 

cm2 geometric surface area) or a gold working electrode (0.05 cm2
 geometric surface area, WE). 

A gold wire was used as a counter electrode and all experiments were measured against the 
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reversible hydrogen electrode (RHE). The electrochemical cell was boiled twice in Millipore 

MilliQ water (>18.2 MΩ cm resistivity) prior to the experiment. The ITO working electrode 

was cleaned by sonicating twice in 2-propanol (Honeywell, reagent grade) for 20 min, followed 

by sonication in MilliQ water (>18.2 MΩ cm resistivity). The electrode (50 ´ 7 mm) was 

lowered 5 mm into the electrolyte solution, resulting in an active electrode surface of 5 ´ 7 mm. 

The Au WE consisted of a disc and was used in a hanging meniscus configuration. The WE 

was cleaned by applying 10 V between the WE and a graphite counter electrode for 30 s in a 

10% H2SO4 solution. This was followed by dipping the WE in a 6 M HCl solution for 20 s. The 

electrode was flame annealed, followed by electrochemical polishing in 0.1 M HClO4, while 

scanning between 0 and 1.75 V vs RHE for 200 cycles at 1 V s−1. The electrolyte solutions were 

prepared from MilliQ water (>18.2 MΩ cm resistivity) and HClO4 (Merck, Suprapur). The 

catalysts (0.5 mM) were dissolved in 0.1 M HClO4 electrolyte solutions. 

The electrochemical quartz crystal microbalance (EQCM) experiments were performed in a 

3 ml Teflon cell purchased from Autolab. As a working electrode, an Autolab EQCM electrode 

was used, wherein a 200 nm gold layer (0.35 cm2 geometric surface area) was deposited on a 

quartz crystal. A custom-made RHE was used that allowed for a stable EQCM signal. 

Calibration details of the EQCM can be found elsewhere.[88] 

During the online electrochemical mass spectrometry (OLEMS) measurements the gaseous 

products formed at the working electrode were collected via a hydrophobic tip (KEL-F with a 

porous Teflon plug) in close proximity to the surface of the working electrode and analyzed in 

a Pfeiffer QMS 200 mass spectrometer. An Ivium A06075 potentiostat was used in combination 

with the OLEMS experiments. A detailed description of the OLEMS setup is available 

elsewhere.[76] 

 

X-ray photoelectron spectroscopy: XPS measurements were carried out with a Thermo 

Scientific K-Alpha, equipped with a monochromatic small-spot X-ray source and a 180° double 

focusing hemispherical analyzer with a 128-channel detector. Spectra were obtained using an 

aluminium anode (Al Kα = 1486.6 eV) operating at 72 W and a spot size of 400 µm. Survey 

scans were measured at a constant pass energy of 200 eV and region scans at 50 eV. The 

background pressure was 2 × 10−8 mbar and during measurement 4 × 10−7 mbar Argon because 

of charge compensation. 

Samples for XPS were prepared by chrono amperometry at gold working electrodes with 0.5 

mM of 8b in 0.1 M HClO4 electrolyte solutions at 1.8 V versus RHE. Samples were prepared 

by applying oxidative potentials for 1, 3, 5 or 10 minutes. 
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Crystal structure determinations: Crystal data for 8b, 8d, 8e, 9a, 9b, 9c, 10, 11, 12a, and 

12b were collected using a Rigaku (former Agilent Technologies) Oxford Diffraction 

SuperNova A diffractometer fitted with an Atlas detector.[89] 8e and 9b were measured with Cu 

Kα radiation (1.54184 Å). All other complexes were measured with Mo Kα radiation (0.71073 

Å). For 8b, 10, and 11 the radiation was Al filtered.[90] A complete dataset was collected, 

assuming that the Friedel pairs are not equivalent. Data reduction was performed using the 

CrysAlisPro program. The intensities were corrected for Lorentz and polarization effects, and 

numerical absorption correction based on gaussian integration over a multifaceted crystal 

model was applied. The structures were solved by direct methods using SHELXS,[91] which 

revealed the positions of all not disordered non-hydrogen atoms. The non-hydrogen atoms were 

refined anisotropically. All H-atoms were placed in geometrically calculated positions and 

refined using a riding model where each H-atom was assigned a fixed isotropic displacement 

parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for the methyl groups and 

water). Refinement of the structure was carried out on F2 using full-matrix least-squares 

procedures, which minimized the function Σw(Fo
2 – Fc

2)2. The weighting scheme was based on 

counting statistics and included a factor to downweight the intense reflections. All calculations 

were performed using the SHELXL-2014/7 (8b, 10, 11) or SHELXL97-2 (all others) 

program.[92] Further crystallographic details are compiled in Tables S1–10. Crystallographic 

data for all structures have been deposited with the Cambridge Crystallographic Data Centre 

(CCDC) as supplementary publication numbers 8b (1909354), 8d (1909357), 8e (1909356), 9a 

(1909363), 9b (109361), 9c (1909359), 10 (1909360), 11 (1909355), 12a (1909358), and 12b 

(1909362). 
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Key topic: Water oxidation 

 
Technique matters: Water oxidation catalysis activity with iridium complexes can be tailored 

rationally through substituent modification on the pyridyl-triazolylidene ligand when CeIV is 

used as terminal oxidant, however, different reactivity patterns are observed when using 

electrochemical methods for water oxidation catalysis, indicating that chemical oxidation 

provides a poor guideline for probing water oxidation catalysts for artificial photosynthetic 

devices. 
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