530 research outputs found

    Economic Reform and Integration. Proceedings of 1-3 March 1990 Meeting

    Get PDF
    The general aim of the IIASA Project on "Economic Reform and Integration" (ERI) can be formulated as establishing bridges between eastern and western economic theory and practice, creating conditions for mutually assimilating successful managerial experience, and for possible rapprochement of economic systems. This volume contains major contributions by Soviet scientists, together with comments by western experts offered during the 1-3 March 1990 ERI Meeting. We believe that this material is of wide and timely interest and may also serve as a reference document for later studies once the time has come to penetrate scientifically the very fast changes we are witnessing today in central and eastern Europe

    Economic Reform & Integration Project (ERI) of the Technology, Economy & Society (TES) Program

    Get PDF
    In summer 1989 IIASA was approached by Academician S. Shatalin of the Soviet Union with the request to consider establishing an activity that could analyze international economic interdependencies and serve as a scientific forum to support economic reforms in the Soviet Union and the other socialist Member countries of our Institute. In late 1989, the Economic Reform and Integration (ERI) Project was established with the general aim of establishing bridges between eastern and western economic theory and practice, creating conditions for mutually assimilating successful managerial experience, and for possible rapprochement of economic systems. This paper presents the current status of the IIASA ERI Project

    Dipolar Relaxation in an ultra-cold Gas of magnetically trapped chromium atoms

    Full text link
    We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 μB\mu_B results in an event rate coefficient for dipolar relaxation processes of up to 3.210113.2\cdot10^{-11} cm3^{3}s1^{-1} at a magnetic field of 44 G. We present a theoretical model based on pure dipolar coupling, which predicts dipolar relaxation rates in agreement with our experimental observations. This very general approach can be applied to a large variety of dipolar gases.Comment: 9 pages, 9 figure

    Phase-stabilized UV light at 267 nm through twofold second harmonic generation

    Get PDF
    Providing phase stable laser light is important to extend the interrogation time of optical clocks towards many seconds and thus achieve small statistical uncertainties. We report a laser system providing more than 50 µW phase-stabilized UV light at 267.4 nm for an aluminium ion optical clock. The light is generated by frequency-quadrupling a fibre laser at 1069.6 nm in two cascaded non-linear crystals, both in single-pass configuration. In the first stage, a 10 mm long PPLN waveguide crystal converts 1 W fundamental light to more than 0.2 W at 534.8 nm. In the following 50 mm long DKDP crystal, more than 50 µW of light at 267.4 nm are generated. An upper limit for the passive short-term phase stability has been measured by a beat-node measurement with an existing phase-stabilized quadrupling system employing the same source laser. The resulting fractional frequency instability of less than 5×10−17 after 1 s supports lifetime-limited probing of the 27Al+ clock transition, given a sufficiently stable laser source. A further improved stability of the fourth harmonic light is expected through interferometric path length stabilisation of the pump light by back-reflecting it through the entire setup and correcting for frequency deviations. The in-loop error signal indicates an electronically limited instability of 1 × 10−18 at 1 s

    Precision spectroscopy with two correlated atoms

    Full text link
    We discuss techniques that allow for long coherence times in laser spectroscopy experiments with two trapped ions. We show that for this purpose not only entangled ions prepared in decoherence-free subspaces can be used but also a pair of ions that are not entangled but subject to the same kind of phase noise. We apply this technique to a measurement of the electric quadrupole moment of the 3d D5/2 state of 40Ca+ and to a measurement of the linewidth of an ultrastable laser exciting a pair of 40Ca+ ions

    Neutron stars in generalized f(R) gravity

    Full text link
    Quartic gravity theory is considered with the Einstein-Hilbert Lagrangean R+aR2+bRμνRμν,R+aR^{2}+bR_{\mu \nu}R^{\mu \nu}, RμνR_{\mu \nu} being Ricci\'s tensor and R the curvature scalar. The parameters aa and bb are taken of order 1 km2.^{2}. Arguments are given which suggest that the effective theory so obtained may be a plausible approximation of a viable theory. A numerical integration is performed of the field equations for a free neutron gas. As in the standard Oppenheimer-Volkoff calculation the star mass increases with increasing central density until about 1 solar mass and then decreases. However a dramatic difference exists in the behaviour of the baryon number, which increases monotonically. The calculation suggests that the theory allows stars in equilibrium with arbitrary baryon number, no matter how large.Comment: Keywords: stars, neutron stars; gravity; modified gravity Accepted in Astrophysics and Space Scienc

    A Single Laser System for Ground-State Cooling of 25-Mg+

    Full text link
    We present a single solid-state laser system to cool, coherently manipulate and detect 25^{25}Mg+^+ ions. Coherent manipulation is accomplished by coupling two hyperfine ground state levels using a pair of far-detuned Raman laser beams. Resonant light for Doppler cooling and detection is derived from the same laser source by means of an electro-optic modulator, generating a sideband which is resonant with the atomic transition. We demonstrate ground-state cooling of one of the vibrational modes of the ion in the trap using resolved-sideband cooling. The cooling performance is studied and discussed by observing the temporal evolution of Raman-stimulated sideband transitions. The setup is a major simplification over existing state-of-the-art systems, typically involving up to three separate laser sources

    All-Optical Broadband Excitation of the Motional State of Trapped Ions

    Full text link
    We have developed a novel all-optical broadband scheme for exciting, amplifying and measuring the secular motion of ions in a radio frequency trap. Oscillation induced by optical excitation has been coherently amplified to precisely control and measure the ion's secular motion. Requiring only laser line-of-sight, we have shown that the ion's oscillation amplitude can be precisely controlled. Our excitation scheme can generate coherent motion which is robust against variations in the secular frequency. Therefore, our scheme is ideal to excite the desired level of oscillatory motion under conditions where the secular frequency is evolving in time. Measuring the oscillation amplitude through Doppler velocimetry, we have characterized the experimental parameters and compared them with a molecular dynamics simulation which provides a complete description of the system.Comment: 8 pages, 10 figure

    Optimized loading of an optical dipole trap for the production of Chromium BECs

    Full text link
    We report on a strategy to maximize the number of chromium atoms transferred from a magneto-optical trap into an optical trap through accumulation in metastable states via strong optical pumping. We analyse how the number of atoms in a chromium Bose Einstein condensate can be raised by a proper handling of the metastable state populations. Four laser diodes have been implemented to address the four levels that are populated during the MOT phase. The individual importance of each state is specified. To stabilize two of our laser diode, we have developed a simple ultrastable passive reference cavity whose long term stability is better than 1 MHz

    Concerning the quark condensate

    Get PDF
    A continuum expression for the trace of the massive dressed-quark propagator is used to explicate a connection between the infrared limit of the QCD Dirac operator's spectrum and the quark condensate appearing in the operator product expansion, and the connection is verified via comparison with a lattice-QCD simulation. The pseudoscalar vacuum polarisation provides a good approximation to the condensate over a larger range of current-quark masses.Comment: 7 pages, LaTeX2e, revtex
    corecore