1,086 research outputs found

    NLO QCD Corrections and Triple Gauge Boson Vertices at the NLC

    Get PDF
    We study NLO QCD corrections as relevant to hadronic W decay in W pair production at a future 500 GeV electron-positron linac, with particular emphasis on the determination of triple gauge boson vertices. We find that hard gluon bremstrahlung may mimic signatures of anomalous triple gauge boson vertices in certain distributions. The size of these effects can strongly depend on the polarisation of the initial electron positron beams.Comment: latex file, 13 pages, 1 eps figur

    The Effect of Shadowing on Initial Conditions, Transverse Energy and Hard Probes in Ultrarelativistic Heavy Ion Collisions

    Get PDF
    The effect of shadowing on the early state of ultrarelativistic heavy ion collisions is investigated along with transverse energy and hard process production, specifically Drell-Yan, J/ψJ/\psi, and Υ\Upsilon production. We choose several parton distributions and parameterizations of nuclear shadowing, as well as the spatial dependence of shadowing, to study the influence of shadowing on relevant observables. Results are presented for Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV and Pb+Pb collisions at sNN=5.5\sqrt{s_{NN}} = 5.5 TeV.Comment: Submitted to Phys. Rev.

    Hypoxia and reoxygenation do not upregulate adhesion molecules and natural killer cell adhesion on human endothelial cells in vitro

    Get PDF
    Objectives: Ischemia/reperfusion injury is characterized by endothelial cell activation leading to increased expression of adhesion molecules such as inter-cellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, endothelial- and platelet-selectin (E- and P-selectin), and to the subsequent recruitment of leukocytes. The aim of the present study was to investigate the respective effects of a proinflammatory cytokine (tumor necrosis factor alpha , TNF-α), hypoxia and/or reoxygenation on adhesion molecule expression and natural killer (NK) cell adhesion in an in vitro model of I/R. Methods: Human aortic endothelial cells (HAEC) were stimulated in vitro for 8h with TNF-α (1000 U/ml) and exposed to hypoxia (1% O2), reoxygenation (21% O2) or different combinations thereof. Cell surface expression of ICAM-1, VCAM-1 and E-/P-selectin on HAEC was analyzed by flow cytometry, and culture supernatants were tested for soluble adhesion molecules by ELISA. Rolling adhesion of NK cells on HAEC was determined using a rotating assay. Results: Untreated HAEC constitutively expressed ICAM-1 on their surface but neither expressed E-/P-selectin, VCAM-1, nor shedded soluble adhesion molecules. Exposure of HAEC to hypoxia or hypoxia and reoxygenation did not upregulate cell surface expression or shedding of adhesion molecules. In contrast, TNF-α significantly upregulated cell surface expression of ICAM-1, VCAM-1, and E-/P-selectin and led to the shedding of ICAM-1 and E-selectin. Combined treatment of HAEC with TNF-α, hypoxia and reoxygenation reduced E-/P-selectin surface expression and enhanced E-selectin shedding, but did not further influence ICAM-1 and VCAM-1. Soluble VCAM-1 was not detected. NK cell adhesion on HAEC increased 4-fold after TNF-α stimulation, but was not affected by hypoxia or hypoxia and reoxygenation. Conclusions: Both the expression of endothelial adhesion molecules and rolling NK cell adhesion was upregulated by TNF-α but not by hypoxia alone or hypoxia followed by reoxygenation supporting the view that anti-inflammatory treatment may reduce ischemia/reperfusion injur

    Dynamic Front Transitions and Spiral-Vortex Nucleation

    Full text link
    This is a study of front dynamics in reaction diffusion systems near Nonequilibrium Ising-Bloch bifurcations. We find that the relation between front velocity and perturbative factors, such as external fields and curvature, is typically multivalued. This unusual form allows small perturbations to induce dynamic transitions between counter-propagating fronts and nucleate spiral vortices. We use these findings to propose explanations for a few numerical and experimental observations including spiral breakup driven by advective fields, and spot splitting

    Controlling magnetic anisotropy in La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> nanostructures

    Get PDF
    We have developed a chlorine based dry etching process for nanopatterning the ferromagnetic oxide La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; (LSMO). Large arrays of millions of identical structures have been fabricated from thin LSMO films by electron-beam lithography and reactive ion etching. SQUID magnetometry demonstrates that patterned nanostructures with lateral dimensions down to 100 nm retain their full magnetization and the Curie temperature of the bulk layer. In addition, their shape anisotropy is sufficient to overcome the crystalline anisotropy of the bulk. High resolution scanning transmission electron microscopy shows that crystallinity is preserved even at the edges of the nanostructures

    The association between dietary macronutrient intake and fibrogen growth factor 21 in a sample of White UK adults with elevated cardiometabolic risk markers

    Get PDF
    Increased levels of Fibrogen growth factor 21 (FGF21) is an emerging risk marker for cardiometabolic (CM) disease(1). Little detail is known about the impact of the human diet on FGF21 levels. The aim of this investigation was to assess potential associations between mean daily dietary macronutrient intake and FGF21 levels in a sample of 10 healthy normal-weight and overweight Caucasian adults aged 32–60 (80 % male) at increased CM risk(2). This pilot study received ethical approval from Liverpool John Moores University Research Ethics Committee (16/ELS/029) and was registered with ClinicalTrials.gov (Ref. NCT03257085). Participants were randomly allocated to one of two groups and asked to either consume 50 % energy from CHO for a duration of 8 weeks. Blood plasma samples were col- lected at baseline (BL), interim point (IP) and endpoint (EP) after a 12-hour overnight fast, immediately processed and frozen at −80°C. Thawed plasma samples were analysed via Quantikine® enzyme-linked immunosorbent assay (ELISA) (R&D Systems) for FGF21 levels. Two-way mixed ANOVA and Pearson’s partial correlation adjusted for estimated weekly moderate and vigorous activity was undertaken using IBM SPSS 24®. There were no effects for diet between groups or over time (data not shown). Significant correlations between macronutrient intakes and FGF21 levels were found for both groups at IP, but not at BL or EP. Moderate and significant positive correlations were found in the overall group for intake (g/d) for glucose (rpartial = ·699, p = ·04) and fructose (rpartial = ·686, p = ·04) and strong and significant positive correlations for non-milk extrinsic sugars (rpartial = ·742, p = ·02). Strong and significant positive correlations were also found in the LC group for glucose intake (g/d) (rpartial = ·980, p = ·02) and fructose (rpartial = ·967, p = ·03) and for protein (rpartial =·998, p=·002) after adjusting for physical activity. Mean carbohydrate intake (g/d) was 160·0 (s.d. 124·5) overall and 44·2 (s.d. 14·9) in the LC group at IP. Mean protein intake (g/d) was 113·2 (21·4) 130·0 (s.d. 15·9) overall and in the LC group at IP. Mean FGF21 levels were 179·9 pg/mL (s.d. 144·9) in the overall group and 94.4 pg/ML (s.d. 48.6) in the LC group at IP. %TE Intake (g/d) PROT FAT CHO GLU FRU NMES PROT FAT rrrrrrrrrrr −·214 ·623 ·635 −·326 −·491 ·448 ·699* ·686* ·742* −·606 −·496 ·143 ·637 ·937 ·427 −·059 ·722 ·980* ·967* ·919 ·998** −·080 Total kcal CHO NMES T LC CHO-Total carbohydrates, FAT-Total fat, FRU-Fructose, GLUC-Glucose, LC-low-carbohydrate, high-fat group, NMES-non-milk extrinsic sugars, PROT-protein, T – total, %TE – percentage total energy, *p < ·05 **p < ·005. In conclusion, low-carbohydrate diets provide the opportunity to assess responses to even small amounts of CHO, which are likely to be replaced in part by proteins. Despite low overall intakes of fructose and glucose in the LC group, strong and positive correlations with FGF21 levels were observed. The lower levels of FGF21 in the LC compared to the overall group are in line with findings that FGF21 levels are elevated with high-carbohydrate, low-protein diets with dietary fats having only minor impact(3). However, the majority of studies have still been undertaken using rodent models. The impact of dietary macronutrients on FGF21 levels as novel CMR marker in humans and the mechanism behind this relationship warrant further investigation. 1. Lakhani I, Gong M, Wong W et al. (2018) Metabolism 2018 Feb 1. pii: S0026-0495(18)30023-4. [Epub ahead of print]. 2. Jebb S, Lovegrove J, Griffin B et al. (2010) Am J Clin Nutr 92, 748–58. 3. Solon-Biet S, Cogger V, Pulpitel T et al. (2016) Cell Metab 24, 555–565

    Dietary carbohydrate intake, visceral adipose tissue and associated markers of cardiometabolic risk

    Get PDF
    Risk of cardiometabolic (CM) disease is characterised by elevated visceral adipose tissue (VAT) and a number of associated biomar- kers(1). Some dietary carbohydrates (CHO) have been found to contribute to VAT accumulation(2). Little is known about the impact of following a low-carbohydrate diet versus a high-carbohydrate diet on VAT, adiponectin (ADPN), leptin (LEPT) and leptin:adipo- nectin ratio (LAR). The aim of this investigation was to assess the impact of dietary carbohydrates (CHO) on VAT and emerging CM risk markers in a sample of 10 healthy normal-weight and overweight Caucasian adults aged 32–60 (80 % male) at increased CM risk(3). This pilot study received ethical approval from Liverpool John Moores University Research Ethics Committee (16/ELS/ 029) and was registered with ClinicalTrials.gov (Ref. NCT03257085). Participants were randomly allocated to one of two groups and asked to either consume 50 % energy from CHO (high-carb (HC)) for a duration of 8 weeks. VAT was ana- lysed via bioelectrical impedance (SECA mBCA 515). Blood plasma samples were collected at baseline (BL), interim point (IP) and endpoint (EP) after a 12-hour overnight fast, immediately processed and frozen at -80°C. Thawed plasma samples were analysed via immunoassay technology (Randox Evidence InvestigatorTM Metabolic Syndrome Arrays I and II) for ADPN and LEPT levels. Statistical analysis was undertaken using IBM SPSS 24®. Parametric data was analysed via two-way mixed ANOVA; non-parametric data was analysed via Mann-Whitney U test and Friedman test. Average daily carbohydrate intake in the LC group was 44·2 g at IP and 48·9 g at EP. There were no significant differences between groups at any time point for ADPN, LEPT, LAR or VAT and no significant inter- actions for time or group*time for ADPN, LEPT or LAR. However, in the LC group VAT decreased significantly between baseline and endpoint by 15 % (p = ·015) Over the course of the intervention ADPN and LEPT decreased non- significantly (by 4 % and 70 % respectively) in the LC group, whilst increasing non-significantly in the HC group (9 % and 65 % respectively). LAR increased in the HC group throughout the study, whilst LAR in the LC group decreased albeit not significantly. VAT (litre) ADPN (ng/mL) LEPT (ng/mL) LAR BL IP EP Median Median Median M SD M SD M SD BL IP EP BL IP EP BL IP EP LC 4·1a 1·2 3·8 1·3 3·5a 1·2 8·9 8·6 8·5 3·96 1·64 1·20 0·45 0·19 0·14 HC 2·7 0·1 1·6 0·3 2·5 0·1 11·3 13·4 12·3 0·97 1·1 1·60 0·07 0·07 0·46 ADPN = adiponectin, BL = baseline, EP = endpoint, HC = high-carbohydrate, moderate fat diet, IP = interim point, LAR = leptin:adiponectin ratio, LEPT = leptin, LC = low-carbohydrate, high-fat diet, VAT = visceral adipose tissue, ap = ·015. NB: interquartile ranges not provided for median values due to missing data. Higher LAR has been found to be a marker of increased CM risk(4). In conclusion, while the significant reduction in VAT in the LC group corresponds with the reduction of LAR further evidence is required to corroborate these findings. Previous evidence for LC is supportive for improved CM health from various biomarkers(5); LAR should be considered as a useful endocrine addition for future LC studies. 1. Krasimira A, Mozaffarian D & Pischon T (2018) Clin Chem 64, 142–153. 2. Rüttgers D, Fischer K, Koch M et al. (2015) Br J Nutr 114, 1929–1940. 3. Jebb S, Lovegrove J, Griffin B et al. (2010) Am J Clin Nutr 92, 748–58. 4. López-Jaramillo P, Gómez-Arbeláez D, López-López J et al. (2014) Horm Mol Biol Clin Investig 18, 37–45. 5. Bazzano L, Hi T, Reynolds K et al. (2014) Ann Intern Med 161, 309–318

    Filtering spin with tunnel-coupled electron wave guides

    Full text link
    We show how momentum-resolved tunneling between parallel electron wave guides can be used to observe and exploit lifting of spin degeneracy due to Rashba spin-orbit coupling. A device is proposed that achieves spin filtering without using ferromagnets or the Zeeman effect.Comment: 4 pages, 4 figures, RevTex

    Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    Get PDF
    <p>Abstract</p> <p>The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The &#8220;etch suppression&#8221; area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.</p
    • …
    corecore