50,350 research outputs found

    The coexistence of superconductivity and ferromagnetism in nano-scale metallic grains

    Full text link
    A nano-scale metallic grain in which the single-particle dynamics are chaotic is described by the so-called universal Hamiltonian. This Hamiltonian includes a superconducting pairing term and a ferromagnetic exchange term that compete with each other: pairing correlations favor minimal ground-state spin, while the exchange interaction favors maximal spin polarization. Of particular interest is the fluctuation-dominated regime where the bulk pairing gap is comparable to or smaller than the single-particle mean level spacing and the Bardeen-Cooper-Schrieffer theory of superconductivity breaks down. Superconductivity and ferromagnetism can coexist in this regime. We identify signatures of the competition between superconductivity and ferromagnetism in a number of quantities: ground-state spin, conductance fluctuations when the grain is weakly coupled to external leads and the thermodynamic properties of the grain, such as heat capacity and spin susceptibility.Comment: 13 pages, 13 figures, Proceedings of the Conference on the Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT11

    Reduced basis method for source mask optimization

    Full text link
    Image modeling and simulation are critical to extending the limits of leading edge lithography technologies used for IC making. Simultaneous source mask optimization (SMO) has become an important objective in the field of computational lithography. SMO is considered essential to extending immersion lithography beyond the 45nm node. However, SMO is computationally extremely challenging and time-consuming. The key challenges are due to run time vs. accuracy tradeoffs of the imaging models used for the computational lithography. We present a new technique to be incorporated in the SMO flow. This new approach is based on the reduced basis method (RBM) applied to the simulation of light transmission through the lithography masks. It provides a rigorous approximation to the exact lithographical problem, based on fully vectorial Maxwell's equations. Using the reduced basis method, the optimization process is divided into an offline and an online steps. In the offline step, a RBM model with variable geometrical parameters is built self-adaptively and using a Finite Element (FEM) based solver. In the online step, the RBM model can be solved very fast for arbitrary illumination and geometrical parameters, such as dimensions of OPC features, line widths, etc. This approach dramatically reduces computational costs of the optimization procedure while providing accuracy superior to the approaches involving simplified mask models. RBM furthermore provides rigorous error estimators, which assure the quality and reliability of the reduced basis solutions. We apply the reduced basis method to a 3D SMO example. We quantify performance, computational costs and accuracy of our method.Comment: BACUS Photomask Technology 201

    Mixing with the radiofrequency single-electron transistor

    Full text link
    By configuring a radio-frequency single-electron transistor as a mixer, we demonstrate a unique implementation of this device, that achieves good charge sensitivity with large bandwidth about a tunable center frequency. In our implementation we achieve a measurement bandwidth of 16 MHz, with a tunable center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating at 300 mK. Ultimately this device is limited in center frequency by the RC time of the transistor's center island, which for our device is ~ 1.6 GHz, close to the measured value. The measurement bandwidth is determined by the quality factor of the readout tank circuit.Comment: Submitted to APL september 200

    Effect of organic, low-input and conventional production systems on yield and diseases in winter barley

    Get PDF
    The effect of organic, low-input and conventional management practices on barley yield and disease incidence was assessed in field trials over two years. Conventional fertility management (based on mineral fertiliser applications) and conventional crop protection (based on chemosynthetic pesticides) significantly increased the yield of winter barley as compared to organic fertility and crop protection regimes. Severity of leaf blotch (Rhynchosporium secalis) was highest under organic fertility and crop protection management and was correlated inversely with yield. For mildew (Erysiphe graminis), an interaction between fertility management and crop protection was detected. Conventional crop protection reduced severity of the disease, only under conventional fertility management. Under organic fertility management, incidence of mildew was low and application of synthetic pesticides in “low input” production systems had no significant effect on disease severity

    Quantum-Classical Crossover and Apparent Metal-Insulator Transition in a Weakly Interacting 2D Fermi Liquid

    Full text link
    We report the observation of a parallel magnetic field induced metal-insulator transition (MIT) in a high-mobility two-dimensional electron gas (2DEG) for which spin and localization physics most likely play no major role. The high-mobility metallic phase at low field is consistent with the established Fermi liquid transport theory including phonon scattering, whereas the insulating phase at higher field shows a large negative temperature dependence at resistances much smaller than the quantum of resistance, h/e2h/e^2. We argue that this observation is a direct manifestation of a quantum-classical crossover arising predominantly from the magneto-orbital coupling between the finite width of the 2DEG and the in-plane magnetic field.Comment: 4 pages, 2 figure

    SiGe quantum dots for fast hole spin Rabi oscillations

    Get PDF
    We report on hole g-factor measurements in three terminal SiGe self-assembled quantum dot devices with a top gate electrode positioned very close to the nanostructure. Measurements of both the perpendicular as well as the parallel g-factor reveal significant changes for a small modulation of the top gate voltage. From the observed modulations we estimate that, for realistic experimental conditions, hole spins can be electrically manipulated with Rabi frequencies in the order of 100MHz. This work emphasises the potential of hole-based nano-devices for efficient spin manipulation by means of the g-tensor modulation technique
    corecore