7 research outputs found

    Clonal karyotype evolution involving ring chromosome 1 with myelodysplastic syndrome subtype RAEB-t progressing into acute leukemia

    Get PDF
    s Karyotypic evolution is a well-known phenomenon in patients with malignant hernatological disorders during disease progression. We describe a 50-year-old male patient who had originally presented with pancytopenia in October 1992. The diagnosis of a myelodysplastic syndrome (MDS) FAB subtype RAEB-t was established in April 1993 by histological bone marrow (BM) examination, and therapy with low-dose cytosine arabinoside was initiated. In a phase of partial hernatological remission, cytogenetic assessment in August 1993 revealed a ring chromosome 1 in 13 of 21 metaphases beside BM cells with normal karyotypes {[}46,XY,r(1)(p35q31)/46,XY]. One month later, the patient progressed to an acute myeloid leukemia (AML), subtype M4 with 40% BM blasts and cytogenetic examination showed clonal evolution by the appearance of additional numerical aberrations in addition to the ring chromosome{[}46,XY,r(1),+8,-21/45,XY,r(1),+8,-21,-22/46, XY]. Intensive chemotherapy and radiotherapy was applied to induce remission in preparation for allogeneic bone marrow transplantation (BMT) from the patient's HLA-compatible son. After BMT, complete remission was clinically, hematologically and cytogenetically (normal male karyotype) confirmed. A complete hematopoietic chimerism was demonstrated. A relapse in January 1997 was successfully treated using donor lymphocyte infusion and donor peripheral blood stem cells (PB-SC) in combination with GM-CSF as immunostimulating agent in April 1997, and the patient's clinical condition remained stable as of January 2005. This is an interesting case of a patient with AML secondary to MDS. With the ring chromosome 1 we also describe a rare cytogenetic abnormality that predicted the poor prognosis of the patient, but the patient could be cured by adoptive immunotherapy and the application of donor's PB-SC. This case confirms the value of cytogenetic analysis in characterizing the malignant clone in hernatological neoplasias, the importance of controlling the quality of an induced remission and of the detection of a progress of the disease. Copyright (c) 2006 S. Karger AG, Basel

    Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis

    Get PDF
    We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6 deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment

    In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping

    No full text
    Reuther S, Schmetzer H, Schuster FR, et al. In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clinical and Experimental Medicine. 2013;13(1):29-48.Myeloid leukemic cells can be induced to differentiate into leukemia-derived dendritic cells (DC(leu)) regaining the stimulatory capacity of professional DCs while presenting the leukemic antigen repertoire. But so far, the induced antileukemic T-cell responses are variable both in specificity and in efficacy. In an attempt to elucidate the underlying causes of different T-cell response patterns, T-cell receptor (TR) Vβ chain rearrangements were correlated with the T cells corresponding immunophenotypic profile, as well as their proliferative response and cytolytic capacities. In three different settings, donor T cells, either human leukocyte antigen matched or mismatched (haploidentical), or autologous T cells were repeatedly stimulated with myeloid blasts or leukemia-derived DC/DC(leus) from the corresponding patients diseased from acute myeloid leukemia (AML). Although no significant differences in T-cell proliferation were observed, the T-cell-mediated cytolytic response pattern varied considerably and even caused blast proliferation in two cases. Spectratyping revealed a remarkable restriction (>75 % of normal level) of the CD4(+) or CD8(+)-TR repertoire of blast- or DC/DC(leu)-stimulated T cells. Although in absolute terms, DC/DC(leu) stimulation induced the highest grade of restriction in the CD8(+) T-cell subset, the CD4(+) T-cell compartment seemed to be relatively more affected. But most importantly, in vitro stimulation with DC/DC(leu) resulted into an identical TR restriction pattern (β chain) that could be identified in vivo in a patient sample 3 months after allo-SCT. Thus, in vitro tests combining functional flow cytometry with spectratyping might provide predictive information about T cellular response patterns in vivo
    corecore