1,560 research outputs found
Homogeneous bubble nucleation limit of mercury under the normal working conditions of the planned European Spallation Source
In spallation neutron sources, liquid mercury is the subject of big thermal
and pressure shocks, upon adsorbing the proton beam. These changes can cause
unstable bubbles in the liquid, which can damage the structural material. While
there are methods to deal with the pressure shock, the local temperature shock
cannot be avoided. In our paper we calculated the work of the critical cluster
formation (i.e. for mercury micro-bubbles) together with the rate of their
formation (nucleation rate). It is shown that the homogeneous nucleation rates
are very low even after adsorbing several proton pulses, therefore the
probability of temperature induced homogeneous bubble nucleation is negligible.Comment: 22 Pages, 11 figures, one of them is colour, we plan to publish it in
Eur. Phys. J.
Capillary pressure of van der Waals liquid nanodrops
The dependence of the surface tension on a nanodrop radius is important for
the new-phase formation process. It is demonstrated that the famous Tolman
formula is not unique and the size-dependence of the surface tension can
distinct for different systems. The analysis is based on a relationship between
the surface tension and disjoining pressure in nanodrops. It is shown that the
van der Waals interactions do not affect the new-phase formation thermodynamics
since the effect of the disjoining pressure and size-dependent component of the
surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano
Constrained Dynamics of Universally Coupled Massive Spin 2-spin 0 Gravities
The 2-parameter family of massive variants of Einstein's gravity (on a
Minkowski background) found by Ogievetsky and Polubarinov by excluding lower
spins can also be derived using universal coupling. A Dirac-Bergmann
constrained dynamics analysis seems not to have been presented for these
theories, the Freund-Maheshwari-Schonberg special case, or any other massive
gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here
the Dirac-Bergmann apparatus is applied to these theories. A few remarks are
made on the question of positive energy. Being bimetric, massive gravities have
a causality puzzle, but it appears soluble by the introduction and judicious
use of gauge freedom.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200
Different Transport Pathways of Individual Precursor Proteins in Mitochondria
Transport of mitochondrial precursor proteins into mitochondria of Neurospora crassa was studied in a cellfree reconstituted system. Precursors were synthesized in a reticulocyte lysate programmed with Neurospora mRNA and transported into isolated mitochondria in the absence of protein synthesis. Uptake of the following precursors was investigated: apocytochrome c, ADP/ATP carrier and subunit 9 of the oligomycin-sensitive ATPase.
Addition of high concentrations of unlabelled chemically prepared apocytochrome c (1–10 μM) inhibited the appearance in the mitochondrial of labelled cytochrome c synthesized in vitro because the unlabelled protein dilutes the labelled one and because the translocation system has a limited capacity [apparent V is 1–3 pmol × min−1× (mg mitochondrial protein)−1]. Concentrations of added apocytochrome c exceeding the concentrations of precursor proteins synthesized in vitro by a factor of about 104 did not inhibit the transfer of ADP/ATP carrier or ATPase subunit 9 into mitochondria. Carbonylcyanide m-chlorophenylhydrazone, an uncoupler of oxidative phosphorylation, inhibited transfer in vitro of ADP/ATP carrier and of ATPase subunit 9, but not of cytochrome c.
These findings suggest that cytochrome c and the other two proteins have different import pathways into mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondrial surface mediate the specific recognition of precursor proteins by mitochondria as a first step in the transport process
The Simplicial Ricci Tensor
The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of
gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the
moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the
Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton
to define a non-linear, diffusive Ricci flow (RF) that was fundamental to
Perelman's proof of the Poincare conjecture. Analytic applications of RF can be
found in many fields including general relativity and mathematics. Numerically
it has been applied broadly to communication networks, medical physics,
computer design and more. In this paper, we use Regge calculus (RC) to provide
the first geometric discretization of the Ric. This result is fundamental for
higher-dimensional generalizations of discrete RF. We construct this tensor on
both the simplicial lattice and its dual and prove their equivalence. We show
that the Ric is an edge-based weighted average of deficit divided by an
edge-based weighted average of dual area -- an expression similar to the
vertex-based weighted average of the scalar curvature reported recently. We use
this Ric in a third and independent geometric derivation of the RC Einstein
tensor in arbitrary dimension.Comment: 19 pages, 2 figure
A condensed matter interpretation of SM fermions and gauge fields
We present the bundle Aff(3) x C x /(R^3), with a geometric Dirac equation on
it, as a three-dimensional geometric interpretation of the SM fermions. Each C
x /(R^3) describes an electroweak doublet. The Dirac equation has a
doubler-free staggered spatial discretization on the lattice space Aff(3) x C
(Z^3). This space allows a simple physical interpretation as a phase space of a
lattice of cells in R^3. We find the SM SU(3)_c x SU(2)_L x U(1)_Y action on
Aff(3) x C x /(R^3) to be a maximal anomaly-free special gauge action
preserving E(3) symmetry and symplectic structure, which can be constructed
using two simple types of gauge-like lattice fields: Wilson gauge fields and
correction terms for lattice deformations. The lattice fermion fields we
propose to quantize as low energy states of a canonical quantum theory with
Z_2-degenerated vacuum state. We construct anticommuting fermion operators for
the resulting Z_2-valued (spin) field theory. A metric theory of gravity
compatible with this model is presented too.Comment: Minimal modifications in comparison with the published versio
Biosynthesis of Mitochondrial Porin and Insertion into the Outer Mitochondrial Membrane of Neuruspora crassa
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4°C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane
Imprints of the Quantum World in Classical Mechanics
The imprints left by quantum mechanics in classical (Hamiltonian) mechanics
are much more numerous than is usually believed. We show Using no physical
hypotheses) that the Schroedinger equation for a nonrelativistic system of
spinless particles is a classical equation which is equivalent to Hamilton's
equations.Comment: Paper submitted to Foundations of Physic
Critical Temperature for the Nuclear Liquid-Gas Phase Transition
The charge distribution of the intermediate mass fragments produced in p (8.1
GeV) + Au collisions is analyzed in the framework of the statistical
multifragmentation model with the critical temperature for the nuclear
liquid-gas phase transition as a free parameter. It is found that
MeV (90% CL).Comment: 4 pages, 3 figures, published in Phys. Rev.
- …