6 research outputs found

    Prevention of rejection of allogeneic endothelial cells in a biohybrid lung by silencing HLA-class I expression

    No full text
    Variability in Human Leukocyte Antigens (HLA) remains a hurdle to the application of allogeneic cellular products. Due to insufficient autologous endothelial cell harvesting for the biohybrid lung, allogeneic human cord blood derived endothelial cells (HCBEC) were used for the endothelialization of poly-4-methyl-1-pentene (PMP) gas exchange membranes. Therefore, HLA class I expression was silenced stably in HCBECs to prevent rejection. The capacity of HLA class I-silenced HCBEC to abrogate allogeneic immune responses, their functional properties and suitability for endothelialization of PMP membranes were investigated. Delivery of ÎČ2-microglobulin (ÎČ2m)-specific shRNAs reduced ÎČ2m mRNA levels by up to 90% and caused a knockdown of HLA class I expression by up to 85%. HLA-silenced HCBEC abrogated T-cell responses and escaped antibody-mediated complement-dependent cytotoxicity. The EC phenotype and cytokine secretion profiles between HLA-expressing or -silenced HCBEC remained unaltered. EC specific activation (e.g. ICAM) and thrombogenic markers (e.g. thrombomodulin) remained unaffected by HLA-silencing, but their expression was upregulated by TNFα-stimulation. Furthermore, HLA-silenced HCBECs showed high proliferation rates and built an EC monolayer onto PMP membranes. This study represents a new therapeutic concept in the field of cell and organ transplantation and may bring the bioartificial lung as an alternative to lung transplantation closer to reality

    Towards Biohybrid Lung: Induced Pluripotent Stem Cell Derived Endothelial Cells as Clinically Relevant Cell Source for Biologization

    Get PDF
    In order to provide an alternative treatment option to lung transplantation for patients with end-stage lung disease, we aim for the development of an implantable biohybrid lung (BHL), based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. Complete hemocompatibility of all blood contacting surfaces is crucial for long-lasting BHL durability and can be achieved by their endothelialization. Autologous endothelial cells (ECs) would be the ideal cell source, but their limited proliferation potential excludes them for this purpose. As induced pluripotent stem cell-derived ECs enable the generation of a large number of ECs, we assessed and compared their capacity to form a viable and confluent monolayer on HFM, while indicating physiologic EC-specific anti-thrombogenic and anti-inflammatory properties. ECs were generated from three different human iPSC lines, and seeded onto fibronectin-coated poly-4-methyl-1-pentene (PMP) HFM. Following phenotypical characterization, ECs were analyzed for their thrombogenic and inflammatory behavior with or without TNFα induction, using FACS and qRT-PCR. Complementary, leukocyte- and platelet adhesion assays were carried out. The capacity of the iPSC-ECs to reendothelialize cell-free monolayer areas was assessed in a scratch assay. ECs sourced from umbilical cord blood (hCBECs) were used as control. iPSC-derived ECs formed confluent monolayers on the HFM and showed the typical EC-phenotype by expression of VE-cadherin and collagen-IV. A low protein and gene expression level of E-selectin and tissue factor was detected for all iPSC-ECs and the hCBECs, while a strong upregulation of these markers was noted upon stimulation with TNFα. This was in line with the physiological and strong induction of leukocyte adhesion detected after treatment with TNFα, iPSC-EC and hCBEC monolayers were capable of reducing thrombocyte adhesion and repopulating scratched areas. iPSCs offer the possibility to provide patient-specific ECs in abundant numbers needed to cover all blood contacting surfaces of the BHL with a viable, non-thrombogenic and non-inflammatory monolayer. iPSC-EC clones can differ in terms of their reendothelialization rate, and pro-inflammatory response. However, a less profound inflammatory response may even be advantageous for BHL application. With the proven ability of the seeded iPSC-ECs to reduce thrombocyte adhesion, we expect that thrombotic events that could lead to BHL occlusion can be avoided, and thus, justifies further studies on enabling BHL long-term application

    Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung

    No full text
    Fouling on the gas-exchange hollow-fiber membrane (HFM) of extracorporeal membrane oxygenation (ECMO) devices by blood components and pathogens represents the major hurdle to their long-term application in patients with lung deficiency or unstable hemodynamics. Although patients are treated with anticoagulants, deposition of blood proteins onto the membrane surface may still occur after few days, leading to insufficient gas transfer and, consequently, to device failure. The aim of this study was to establish an endothelial cell (EC) monolayer onto the gas-exchange membrane of an ECMO device with a view to developing a hemocompatible bioartificial lung. Poly(4-methyl-1-pentene) (PMP) gas-exchange membranes were coated with titanium dioxide (TiO2), using the pulsed vacuum cathodic arc plasma deposition (PVCAPD) technique, in order to generate a stable interlayer, enabling cell adhesion onto the strongly hydrophobic PMP membrane. The TiO2 coating reduced the oxygen transfer rate (OTR) of the membrane by 22%, and it successfully mediated EC attachment. The adhered ECs formed a confluent monolayer, which retained a non-thrombogenic state and showed cell-to-cell, as well as cell-to-substrate contacts. The established monolayer was able to withstand physiological shear stress and possessed a ‘‘self-healing” capacity at areas of induced monolayer disruption. The study demonstrated that the TiO2 coating mediated EC attachment and the establishment of a functional EC monolayer
    corecore