1,055 research outputs found
Recommended from our members
An Ancient Token System - The Precursor To Numerals And Writing
Anthropolog
Design Strategies for Playful Technologies to Support Light-intensity Physical Activity in the Workplace
Moderate to vigorous intensity physical activity has an established
preventative role in obesity, cardiovascular disease, and diabetes. However
recent evidence suggests that sitting time affects health negatively
independent of whether adults meet prescribed physical activity guidelines.
Since many of us spend long hours daily sitting in front of a host of
electronic screens, this is cause for concern. In this paper, we describe a set
of three prototype digital games created for encouraging light-intensity
physical activity during short breaks at work. The design of these kinds of
games is a complex process that must consider motivation strategies,
interaction methodology, usability and ludic aspects. We present design
guidelines for technologies that encourage physical activity in the workplace
that we derived from a user evaluation using the prototypes. Although the
design guidelines can be seen as general principles, we conclude that they have
to be considered differently for different workplace cultures and workspaces.
Our study was conducted with users who have some experience playing casual
games on their mobile devices and were able and willing to increase their
physical activity.Comment: 11 pages, 5 figures. Video:
http://living.media.mit.edu/projects/see-saw
MetaSpace II: Object and full-body tracking for interaction and navigation in social VR
MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple
users can not only see and hear but also interact with each other, grasp and
manipulate objects, walk around in space, and get tactile feedback. MS2 allows
walking in physical space by tracking each user's skeleton in real-time and
allows users to feel by employing passive haptics i.e., when users touch or
manipulate an object in the virtual world, they simultaneously also touch or
manipulate a corresponding object in the physical world. To enable these
elements in VR, MS2 creates a correspondence in spatial layout and object
placement by building the virtual world on top of a 3D scan of the real world.
Through the association between the real and virtual world, users are able to
walk freely while wearing a head-mounted device, avoid obstacles like walls and
furniture, and interact with people and objects. Most current virtual reality
(VR) environments are designed for a single user experience where interactions
with virtual objects are mediated by hand-held input devices or hand gestures.
Additionally, users are only shown a representation of their hands in VR
floating in front of the camera as seen from a first person perspective. We
believe, representing each user as a full-body avatar that is controlled by
natural movements of the person in the real world (see Figure 1d), can greatly
enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video:
http://living.media.mit.edu/projects/metaspace-ii
Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms
Upper mantle seismic velocity structures in both vertical and horizontal directions are key to understanding the structure and mechanics of tectonic plates. Recent deployment of the USArray Transportable Array (TA) in the Midwestern United States provides an extraordinary regional earthquake data set to investigate such velocity structure beneath the stable North American craton. In this paper, we choose an M_w5.1 Canadian earthquake in the Quebec area, which is recorded by about 400 TA stations, to examine the P wave structures between the depths of 150 km to 800 km. Three smaller Midwestern earthquakes at closer distance to the TA are used to investigate vertical and horizontal variations in P velocity between depths of 40 km to 150 km. We use a grid-search approach to find the best 1-D model, starting with the previously developed S25 regional model. The results support the existence of an 8° discontinuity in P arrivals caused by a negative velocity gradient in the lithosphere between depths of 40 km to 120 km followed by a small (∼1%) jump and then a positive gradient down to 165 km. The P velocity then decreases by 2% from 165 km to 200 km, and we define this zone as the regional lithosphere-asthenosphere boundary (LAB). Beneath northern profiles, waves reflected from the 410 discontinuity (410) are delayed by up to 1 s relative to those turning just below the 410, which we explain by an anomaly just above the discontinuity with P velocity reduced by ∼3%. The 660 discontinuity (660) appears to be composed of two smaller velocity steps with a separation of 16 km. The inferred low-velocity anomaly above 410 may indicate high water concentrations in the transition zone, and the complexity of the 660 may be related to Farallon slab segments that have yet to sink into the deep mantle
Some applications of three-dimensional input
Thesis (M.S.V.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1980.Includes bibliographical references.Three-dimensional, six degree of freedom input is explored in an interactive computer graphics environment. A particular device, the ROPAMS of Polhemus Navigational Sciences, Inc. is an accurate, unencumbering device based on electromagnetics. It is evaluated as a three-dimensional input device, and such input itself is evaluated for appropriateness and interactivity in a graphics environment. Emphasis is placed on human factors (pointing, body position) as a mode of interactivity.by Christopher Schmandt.Thesis (M.S.V.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1980
Juan de Fuca subduction zone from a mixture of tomography and waveform modeling
Seismic tomography images of the upper mantle structures beneath the Pacific Northwestern United States display a maze of high-velocity anomalies, many of which produce distorted waveforms evident in the USArray observations indicative of the Juan de Fuca (JdF) slab. The inferred location of the slab agrees quite well with existing contour lines defining the slab's upper interface. Synthetic waveforms generated from a recent tomography image fit teleseismic travel times quite well and also some of the waveform distortions. Regional earthquake data, however, require substantial changes to the tomographic velocities. By modeling regional waveforms of the 2008 Nevada earthquake, we find that the uppermost mantle of the 1D reference model AK135, the reference velocity model used for most tomographic studies, is too fast for the western United States. Here, we replace AK135 with mT7, a modification of an older Basin-and-Range model T7. We present two hybrid velocity structures satisfying the waveform data based on modified tomographic images and conventional slab wisdom. We derive P and SH velocity structures down to 660 km along two cross sections through the JdF slab. Our results indicate that the JdF slab is subducted to a depth of 250 km beneath the Seattle region, and terminates at a shallower depth beneath Portland region of Oregon to the south. The slab is about 60 km thick and has a P velocity increase of 5% with respect to mT7. In order to fit waveform complexities of teleseismic Gulf of Mexico and South American events, a slab-like high-velocity anomaly with velocity increases of 3% for P and 7% for SH is inferred just above the 660 discontinuity beneath Nevada
Hot mantle upwelling across the 660 beneath Yellowstone
P-to-s receiver functions mapped to depth through P and S body-wave tomography models image continuous 410 and 660 km discontinuities beneath the area covered by USArray prior to the year 2011. Mean depths to the 410 and 660 km discontinuities of 410 and 656 km imply a mantle transition zone that is about 4 km thicker than the global average and hence has a slightly cooler mean temperature and/or enhanced water content. Compared to the mean 660 depth beneath this ~2000 km wide area, the 660 beneath the Yellowstone hotspot is deflected upward by 12–18 km over an area about 200 km wide. This is the most anomalous shallowing of the 660 imaged and its horizontal extent is similar to the area where P and S tomography image low-velocity mantle extending from the top of the transition zone to about 900 km depth. Together, these results indicate a high-temperature, plume-like upwelling extending across the 660. The depth of 410 km discontinuity beneath the Yellowstone region is within 5 km of the mean depth implying that the plume is vertically heterogeneous and possibly discontinuous. Tomography indicates a similar vertically heterogeneous thermal plume. The irregular plume structure may be intrinsic to the dynamics of upwelling through the transition zone, or distortion may be caused by subduction-induced mantle flow. Topography of the 410 and 660 confirms that subducted slabs beneath the western U.S. are highly segmented, as inferred from recent tomography studies. We find no evidence of regionally pervasive velocity discontinuities between 750 and 1400 km depth. The plume's depth of origin within the lower mantle remains uncertain
Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust
Rayleigh wave ellipticity, or H/V ratio, observed on the surface is particularly sensitive to shallow earth structure. In this study, we jointly invert measurements of Rayleigh wave H/V ratio and phase velocity between 24–100 and 8–100 sec period, respectively, for crust and upper mantle structure beneath more than 1000 USArray stations covering the western United States. Upper crustal structure, in particular, is better constrained by the joint inversion compared to inversions based on phase velocities alone. In addition to imaging Vs structure, we show that the joint inversion can be used to constrain Vp/Vs and density in the upper crust. New images of uppermost crustal structure (<3 km depth) are in excellent agreement with known surface features, with pronounced low Vs, low density, and high Vp/Vs anomalies imaged in the locations of several major sedimentary basins including the Williston, Powder River, Green River, Denver, and San Juan basins. These results demonstrate not only the consistency of broadband H/V ratios and phase velocity measurements, but also that their complementary sensitivities have the potential to resolve density and Vp/Vs variations
Recommended from our members
The Human Clay Figurines And Ancient Near Eastern Magic
‘Ain Ghazal is a Neolithic site located near Amman, Jordan. It was excavated between 1982 and 1998 by an American-Jordanian team directed by Gary O. Rollefson, Whitman College, Walla Walla, Wa. and Zeidan Kafafi, the University of Yarmouk at Irbid, Jordan.
‘Ain Ghazal was first settled about 7250 B.C., during the so-called Pre-Pottery Neolithic B (PPNB) period. In a matter of a few centuries the village of stone houses had spread over 30 acres along the Zarqa River. During a prosperous period when the mixed economy increasingly relied on farming, ca. 7250-6000 B.C., ‘Ain Ghazal witnessed what can be termed an explosion of symbolism. The site was abandoned in the Yarmoukian period ca. 5000 BC. The volume deals with the uniquely rich and varied ‘Ain Ghazal assemblage of symbols including tokens of many shapes, animal and human figurines, modeled human skulls, plaster statues and, mural and floor paintings.The chapter analyses the forty-nine Pre-Pottery Neolithic B and Yarmoukian anthropomorphic clay figurines.
The first part of the study documents the collection: the number of artifacts, their types, style, material, manufacture,
surface treatment, and firing. The figurines are then related to their context: their spatial distribution and place in the
stratigraphy, their relation to the remainder of the assemblage, and their parallels elsewhere in the Near East. The
second part addresses the possible function of the figurines. The objects are shown to match the criteria denoting the
perennial ancient Near Eastern magical practices, as described in the cuneiform literature.Art Histor
- …