260 research outputs found

    Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples

    Get PDF
    Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from complex bacterial communities to identify features that distinguish them

    Bioinformatics for the human microbiome project

    Get PDF
    Microbes inhabit virtually all sites of the human body, yet we know very little about the role they play in our health. In recent years, there has been increasing interest in studying human-associated microbial communities, particularly since microbial dysbioses have now been implicated in a number of human diseases [1]–[3]. Dysbiosis, the disruption of the normal microbial community structure, however, is impossible to define without first establishing what “normal microbial community structure” means within the healthy human microbiome. Recent advances in sequencing technologies have made it feasible to perform large-scale studies of microbial communities, providing the tools necessary to begin to address this question [4], [5]. This led to the implementation of the Human Microbiome Project (HMP) in 2007, an initiative funded by the National Institutes of Health Roadmap for Biomedical Research and constructed as a large, genome-scale community research project [6]. Any such project must plan for data analysis, computational methods development, and the public availability of tools and data; here, we provide an overview of the corresponding bioinformatics organization, history, and results from the HMP (Figure 1).National Institutes of Health (U.S.) (NIH U54HG004969)National Institutes of Health (U.S.) (grant R01HG004885)National Institutes of Health (U.S.) (grant R01HG005975)National Institutes of Health (U.S.) (grant R01HG005969

    Immune Biomarkers in Metastatic Castration-resistant Prostate Cancer.

    Get PDF
    BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease in which molecular stratification is needed to improve clinical outcomes. The identification of predictive biomarkers can have a major impact on the care of these patients, but the availability of metastatic tissue samples for research in this setting is limited. OBJECTIVE: To study the prevalence of immune biomarkers of potential clinical utility to immunotherapy in mCRPC and to determine their association with overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: From 100 patients, mCRPC biopsies were assayed by whole exome sequencing, targeted next-generation sequencing, RNA sequencing, tumor mutational burden, T-cell-inflamed gene expression profile (TcellinfGEP) score (Nanostring), and immunohistochemistry for programmed cell death 1 ligand 1 (PD-L1), ataxia-telangiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), SRY homology box 2 (SOX2), and the presence of neuroendocrine features. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The phi coefficient determined correlations between biomarkers of interest. OS was assessed using Kaplan-Meier curves and adjusted hazard ratios (aHRs) from Cox regression. RESULTS AND LIMITATIONS: PD-L1 and SOX2 protein expression was detected by immunohistochemistry (combined positive score ≥1 and >5% cells, respectively) in 24 (33%) and 27 (27%) mCRPC biopsies, respectively; 23 (26%) mCRPC biopsies had high TcellinfGEP scores (>-0.318). PD-L1 protein expression and TcellinfGEP scores were positively correlated (phi 0.63 [0.45; 0.76]). PD-L1 protein expression (aHR: 1.90 [1.05; 3.45]), high TcellinfGEP score (aHR: 1.86 [1.04; 3.31]), and SOX2 expression (aHR: 2.09 [1.20; 3.64]) were associated with worse OS. CONCLUSIONS: PD-L1, TcellinfGEP score, and SOX2 are prognostic of outcome from the mCRPC setting. If validated, predictive biomarker studies incorporating survival endpoints need to take these findings into consideration. PATIENT SUMMARY: This study presents an analysis of immune biomarkers in biopsies from patients with metastatic prostate cancer. We describe tumor alterations that predict prognosis that can impact future studies

    Esophageal and tracheobronchial foreign bodies in infants and children

    Full text link
    In an effort to improve the diagnosis and management of children with aspiration or ingestion of foreign bodies we reviewed 100 consecutive cases of esophageal (49) or tracheobronchial (51) foreign bodies occurring over a 6-year period. While the incidence of positive physical findings in the esophageal group was low, the combination of plain and contrast radiography was positive in 96% (47/49). Of the patients with tracheobronchial foreign body, 78% (40/51) had lateralizing signs on physical examination and 80% (41/51) had abnormal inspiratory/expiratory radiographs. Disimpaction of esophageal foreign bodies was carried out using a combination of techniques with 100% success and no complications. All cases of tracheobronchial foreign bodies were managed with the rigid bronchoscope with 98% success (50/51) using a variety of instruments. Complications secondary to the foreign body itself rather than its management were seen in 9 patients, and were often due to a delay in diagnosis. A careful history and physical examination along with appropriate radiographic studies will result in a correct diagnosis in virtually all cases of esophageal and tracheobronchial foreign bodies. A liberal indication for endoscopy using an approach tailored to the particular case will almost always be successful.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47159/1/383_2004_Article_BF00175647.pd

    Impact of aprotinin and renal function on mortality: a retrospective single center analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An estimated up to 7% of high-risk cardiac surgery patients return to the operating room for bleeding. Aprotinin was used extensively as an antifibrinolytic agent in cardiac surgery patients for over 15 years and it showed efficacy in reducing bleeding. Aprotinin was removed from the market by the U.S. Food and Drug Administration after a large prospective, randomized clinical trial documented an increased mortality risk associated with the drug. Further debate arose when a meta-analysis of 211 randomized controlled trials showed no risk of renal failure or death associated with aprotinin. However, only patients with normal kidney function have been studied.</p> <p>Methods</p> <p>In this study, we look at a single center clinical trial using patients with varying degrees of baseline kidney function to answer the question: Does aprotinin increase odds of death given varying levels of preoperative kidney dysfunction?</p> <p>Results</p> <p>Based on our model, aprotinin use was associated with a 3.8-fold increase in odds of death one year later compared to no aprotinin use with p-value = 0.0018, regardless of level of preoperative kidney dysfunction after adjusting for other perioperative variables.</p> <p>Conclusions</p> <p>Lessons learned from our experience using aprotinin in the perioperative setting as an antifibrinolytic during open cardiac surgery should guide us in testing future antifibrinolytic drugs for not only efficacy of preventing bleeding, but for overall safety to the whole organism using long-term clinical outcome studies, including those with varying degree of baseline kidney function.</p

    Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients:a feasibility and clinical validity study

    Get PDF
    BACKGROUND: Metagenomic sequencing of respiratory microbial communities for pathogen identification in pneumonia may help overcome the limitations of culture-based methods. We examined the feasibility and clinical validity of rapid-turnaround metagenomics with Nanopore™ sequencing of clinical respiratory specimens. METHODS: We conducted a case-control study of mechanically-ventilated patients with pneumonia (nine culture-positive and five culture-negative) and without pneumonia (eight controls). We collected endotracheal aspirates and applied a microbial DNA enrichment method prior to metagenomic sequencing with the Oxford Nanopore MinION device. For reference, we compared Nanopore results against clinical microbiologic cultures and bacterial 16S rRNA gene sequencing. RESULTS: Human DNA depletion enabled in depth sequencing of microbial communities. In culture-positive cases, Nanopore revealed communities with high abundance of the bacterial or fungal species isolated by cultures. In four cases with resistant clinical isolates, Nanopore detected antibiotic resistance genes corresponding to the phenotypic resistance in antibiograms. In culture-negative pneumonia, Nanopore revealed probable bacterial pathogens in 1/5 cases and Candida colonization in 3/5 cases. In controls, Nanopore showed high abundance of oral bacteria in 5/8 subjects, and identified colonizing respiratory pathogens in other subjects. Nanopore and 16S sequencing showed excellent concordance for the most abundant bacterial taxa. CONCLUSIONS: We demonstrated technical feasibility and proof-of-concept clinical validity of Nanopore metagenomics for severe pneumonia diagnosis, with striking concordance with positive microbiologic cultures, and clinically actionable information obtained from sequencing in culture-negative samples. Prospective studies with real-time metagenomics are warranted to examine the impact on antimicrobial decision-making and clinical outcomes

    Gram Negative Bacteria Are Associated with the Early Stages of Necrotizing Enterocolitis

    Get PDF
    Introduction: Necrotizing enterocolitis (NEC) affects 5–10 % of infants born weighing less than 1500 g. Most models of NEC recapitulate late-stage disease with gut necrosis and elevated inflammatory mediators. Evaluation of NEC at earlier, less lethal stages of disease will allow investigation of initial disease triggers and may advance our understanding of temporal relationships between factors implicated in NEC pathogenesis. In this manuscript, we describe our investigation of early NEC and test the hypothesis that bacteria and inflammatory mediators differ between animals with early NEC and disease fre

    Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities

    Get PDF
    BACKGROUND: Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]). Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny. CONCLUSION/SIGNIFICANCE: Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species specificity of the microbiome in addition to dietary influences. These results contribute to the limited body of primate microbiome studies and provide a framework for comparative microbiome analysis between human and non-human primates as well as a comparative evolutionary understanding of the human microbiome
    corecore