5 research outputs found

    Heterogeneous detection probabilities for imperiled Missouri River fishes: implications for large-river monitoring programs

    Get PDF
    Occupancy modeling was used to determine (1) if detection probabilities (p) for 7 regionally imperiled Missouri River fishes (Scaphirhynchus albus, Scaphirhynchus platorynchus, Cycleptus elongatus, Sander canadensis, Macrhybopsis aestivalis, Macrhybopsis gelida, and Macrhybopsis meeki) differed among gear types (i.e. stationary gill nets, drifted trammel nets, and otter trawls), and (2) how detection probabilities were affected by habitat (i.e. pool, bar, and open water), longitudinal position (five 189 to 367 rkm long segments), sampling year (2003 to 2006), and season (July 1 to October 30 and October 31 to June 30). Adult, large-bodied fishes were best detected with gill nets (p: 0.02–0.74), but most juvenile large-bodied and all small-bodied species were best detected with otter trawls (p: 0.02–0.58). Trammel nets may be a redundant sampling gear for imperiled fishes in the lower Missouri River because most species had greater detection probabilities with gill nets or otter trawls. Detection probabilities varied with river segment for S. platorynchus, C. elongatus, and all small-bodied fishes, suggesting that changes in habitat influenced gear efficiency or abundance changes among river segments. Detection probabilities varied by habitat for adult S. albus and S. canadensis, year for juvenile S. albus, C. elongatus, and S. canadensis, and season for adult S. albus. Concentrating sampling effort on gears with the greatest detection probabilities may increase species detections to better monitor a population’s response to environmental change and the effects of management actions on large-river fishes

    Heterogeneous detection probabilities for imperiled Missouri River fishes: implications for large-river monitoring programs

    Get PDF
    Occupancy modeling was used to determine (1) if detection probabilities (p) for 7 regionally imperiled Missouri River fishes (Scaphirhynchus albus, Scaphirhynchus platorynchus, Cycleptus elongatus, Sander canadensis, Macrhybopsis aestivalis, Macrhybopsis gelida, and Macrhybopsis meeki) differed among gear types (i.e. stationary gill nets, drifted trammel nets, and otter trawls), and (2) how detection probabilities were affected by habitat (i.e. pool, bar, and open water), longitudinal position (five 189 to 367 rkm long segments), sampling year (2003 to 2006), and season (July 1 to October 30 and October 31 to June 30). Adult, large-bodied fishes were best detected with gill nets (p: 0.02–0.74), but most juvenile large-bodied and all small-bodied species were best detected with otter trawls (p: 0.02–0.58). Trammel nets may be a redundant sampling gear for imperiled fishes in the lower Missouri River because most species had greater detection probabilities with gill nets or otter trawls. Detection probabilities varied with river segment for S. platorynchus, C. elongatus, and all small-bodied fishes, suggesting that changes in habitat influenced gear efficiency or abundance changes among river segments. Detection probabilities varied by habitat for adult S. albus and S. canadensis, year for juvenile S. albus, C. elongatus, and S. canadensis, and season for adult S. albus. Concentrating sampling effort on gears with the greatest detection probabilities may increase species detections to better monitor a population’s response to environmental change and the effects of management actions on large-river fishes

    Eutrophication of US Freshwaters: Analysis of Potential Economic Damages

    No full text
    Human-induced eutrophication degrades freshwater systems worldwide by reducing water quality and altering ecosystem structure and function. We compared current total nitrogen (TN) and phosphorus (TP) concentrations for the U.S. Environmental Protection Agency nutrient ecoregions with estimated reference conditions. In all nutrient ecoregions, current median TN and TP values for rivers and lakes exceeded reference median values. In 12 of 14 ecoregions, over 90% of rivers currently exceed reference median values. We calculated potential annual value losses in recreational water usage, waterfront real estate, spending on recovery of threatened and endangered species, and drinking water. The combined costs were approximately 2.2billionannuallyasaresultofeutrophicationinU.S.freshwaters.Thegreatesteconomiclosseswereattributedtolakefrontpropertyvalues(2.2 billion annually as a result of eutrophication in U.S. freshwaters. The greatest economic losses were attributed to lakefront property values (0.3?2.8 billion per year, although this number was poorly constrained) and recreational use ($0.37?1.16 billion per year). Our evaluation likely underestimates economic losses incurred from freshwater eutrophication. We document potential costs to identify where restoring natural nutrient regimes can have the greatest economic benefits. Our research exposes gaps in current records (e.g., accounting for frequency of algal blooms and fish kills) and suggests further research is necessary to refine cost estimates
    corecore