15 research outputs found

    Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia

    Get PDF
    BACKGROUND: In a single-center phase 1-2a study, the anti-CD19 chimeric antigen receptor (CAR) T-cell therapy tisagenlecleucel produced high rates of complete remission and was associated with serious but mainly reversible toxic effects in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukemia (ALL). METHODS: We conducted a phase 2, single-cohort, 25-center, global study of tisagenlecleucel in pediatric and young adult patients with CD19+ relapsed or refractory B-cell ALL. The primary end point was the overall remission rate (the rate of complete remission or complete remission with incomplete hematologic recovery) within 3 months. RESULTS: For this planned analysis, 75 patients received an infusion of tisagenlecleucel and could be evaluated for efficacy. The overall remission rate within 3 months was 81%, with all patients who had a response to treatment found to be negative for minimal residual disease, as assessed by means of flow cytometry. The rates of event-free survival and overall survival were 73% (95% confidence interval [CI], 60 to 82) and 90% (95% CI, 81 to 95), respectively, at 6 months and 50% (95% CI, 35 to 64) and 76% (95% CI, 63 to 86) at 12 months. The median duration of remission was not reached. Persistence of tisagenlecleucel in the blood was observed for as long as 20 months. Grade 3 or 4 adverse events that were suspected to be related to tisagenlecleucel occurred in 73% of patients. The cytokine release syndrome occurred in 77% of patients, 48% of whom received tocilizumab. Neurologic events occurred in 40% of patients and were managed with supportive care, and no cerebral edema was reported. CONCLUSIONS: In this global study of CAR T-cell therapy, a single infusion of tisagenlecleucel provided durable remission with long-term persistence in pediatric and young adult patients with relapsed or refractory B-cell ALL, with transient high-grade toxic effects. (Funded by Novartis Pharmaceuticals; ClinicalTrials.gov number, NCT02435849.

    Transcription profiling of human pretreatment glucocortocoid sensitive and resistant primary leukaemias

    No full text
    Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer. Experiment Overall Design: primary acute lymphoblastic leukemia samples were determined to be sensitive or resistant to in vitro treatment with glucocorticoids. Samples were then hybrized to affymetrix microarray

    Transcription profiling of human CEM_C1 cells after rapamycin treatment of 24 hours

    No full text
    Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer. Experiment Overall Design: CEM-C1 cells were treated with 10 nM rapamycin or DMSO and harvested for microarray analysis at 24 hour

    Transcription profiling of human CEM_C1 cells after rapamycin treatment of 24 hours

    No full text
    Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer. Experiment Overall Design: CEM-C1 cells were treated with 10 nM rapamycin or DMSO and harvested for microarray analysis at 24 hour

    Transcription profiling of human CEM-C1 cells treate with rapamycin for 3 hours

    No full text
    Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer. Experiment Overall Design: CEM-C1 cells were treated with 10 nM rapamycin for 3 hours and compared to DMSO treated cell
    corecore