27 research outputs found

    Sulfurous Gases As Biological Messengers and Toxins: Comparative Genetics of Their Metabolism in Model Organisms

    Get PDF
    Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H2S, SO2 and COS. The genes for H2S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing conditions

    Utility of biotechnology based decision making tools in postharvest grain pest management: an Australian case study

    Get PDF
    A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfectant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area

    Utility of biotechnology based decision making tools in postharvest grain pest management: an Australian case study

    Get PDF
    A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfectant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area

    Behavioral genomics of honeybee foraging and nest defense

    Get PDF
    The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17–61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral traits, comparative bioinformatics, and expression assays facilitated evaluation of candidate genes. An overrepresentation of genes involved in ovarian development and insulin-like signaling components within pollen foraging QTL regions suggests that an ancestral reproductive gene network was co-opted during the evolution of foraging specialization. The major QTL influencing defensive/aggressive behavior contains orthologs of genes involved in central nervous system activity and neurogenesis. Candidates at the other two defensive-behavior QTLs include modulators of sensory signaling (Am5HT(7) serotonin receptor, AmArr4 arrestin, and GABA-B-R1 receptor). These studies are the first step in linking natural variation in honeybee social behavior to the identification of underlying genes

    Maintaining DNA quality in stored-grain beetles caught in Lindgren funnel traps

    No full text
    Lindgren funnel traps baited with aggregation pheromones are effective tools for monitoring flight activity in the red flour beetle (Tribolium castaneum) and lesser grain borer (Rhyzopertha dominica). Beetles caught in these traps are a potentially valuable resource for genetic studies, provided their DNA remains intact. In a series of laboratory and field experiments we evaluated a range of liquid preservatives and dry preservation to determine which approach would provide the highest yield of quality DNA for use in molecular analyses after short-term preservation. Preservatives containing propylene glycol produced an initial decline in PCR yield from extracted DNA in both beetle species after 3 days exposure, but subsequent declines in yield were comparatively slow. Water and phosphate-buffered saline provided good short-term preservation, but the rate of decline accelerated as exposure time increased. Dry preservation (achieved using a section of dichlorvos pest strip as a killing agent) provided the best level of DNA preservation for both species for up to 14 days provided humidity remained low. Hygroscopic water uptake significantly reduced the effectiveness of propylene glycol as a DNA preservative. Whilst propylene glycol is known to be an effective long-term DNA preservative, our results indicate that for typical pheromone trap deployment periods of up to 7 days, T. castaneum and R. dominica are best preserved dry if this is operationally feasible

    Do Phosphine Resistance Genes Influence Movement and Dispersal Under Starvation?

    No full text
    Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field

    A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects

    No full text
    Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples

    Determining changes in the distribution and abundance of a Rhyzopertha dominica phosphine resistance allele in farm grain storages using a DNA marker

    No full text
    BACKGROUND: The lesser grain borer, Rhyzopertha dominica (F.), is a highly destructive pest of stored grain that is strongly resistant to the fumigant phosphine (PH3). Phosphine resistance is due to genetic variants at the rph2 locus that alter the function of the dihydrolipoamide dehydrogenase (DLD) gene. This discovery now enables direct detection of resistance variants at the rph2 locus in field populations. RESULTS: A genotype assay was developed for direct detection of changes in distribution and frequency of a phosphine resistance allele in field populations of R. dominica. Beetles were collected from ten farms in south-east Queensland in 2006 and resampled in 2011. Resistance allele frequency increased in the period from 2006 to 2011 on organic farms with no history of phosphine use, implying that migration of phosphine-resistant R. dominica had occurred from nearby storages. CONCLUSION: Increasing resistance allele frequencies on organic farms suggest local movement of beetles and dispersal of insects from areas where phosphine has been used. This research also highlighted for the first time the utility of a genetic DNA marker in accurate and rapid determination of the distribution of phosphine-resistant insects in the grain value chain. Extending this research over larger landscapes would help in identifying resistance problems and enable timely pest management decisions. © 2013 Society of Chemical Industry © 2013 Society of Chemical Industry 69 6 June 2013 10.1002/ps.3514 Rapid Report Rapid Report © 2013 Society of Chemical Industry

    A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions

    No full text
    BACKGROUND: Next-generation sequencing can enable genetic surveys of large numbers of individuals. We developed a genotyping-by-sequencing assay for detecting strong phosphine resistance alleles in the dihydrolipoamide dehydrogenase (dld) gene of Rhyzopertha dominica populations. The assay can estimate the distribution and frequency of resistance variants in thousands of individual insects in a single run. RESULTS: We analysed 1435 individual insects collected over a 1-year period from 59 grain-storage sites including farms (n = 29) and central storages (n = 30) across eastern Australia. Resistance alleles were detected in 49% of samples, 38% of farms and 60% of central storages. Although multiple alleles were detected, only two resistance variants (P49S and K142E) were widespread and each appeared to have a distinct but overlapping geographical distribution. CONCLUSION: The type of structure in which the grain is stored had a strong effect on resistance allele frequency. We observed higher frequencies of resistance alleles in bunker storages at central sites compared with other storage types. This contributed to the higher frequencies of resistance alleles in bulk-handling facilities relative to farms. The discovery of a storage structure that predisposes insects to resistance highlights the utility of our high-throughput assay system for improvement of phosphine resistance management practices. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industr
    corecore