9 research outputs found

    Fundamental immunosuppressive pathway determining ability of cancer and embryonic cells to escape cytotoxic immune attack

    Get PDF
    Nowadays rapid gaining of knowledge on cancer progression and mutagenesis has enabled the development of improved diagnostics and therapeutic approaches to be used in medicine. Yet, cancer is still one of the most dangerous diseases, especially in Europe, Asia, and America. This is due to rapid mutation of cancer cells and high costs of most therapies. A change in application of treatments is necessary to improve the survival of cancer patients, especially the development of personalized cancer therapy and establishment of easily accessible targets are needed. In the last 20 years the proteins Tim-3, galectin-9 and VISTA have been investigated regarding their influence on cancer development. While a significance was determined in their ability of suppressing immune responses, the exact mechanisms have not been researched yet. Structural analysis has deemed these proteins as being able to interact with each other and results so far indicate that by formation of protein complexes these proteins are able to efficiently inhibit cytotoxic immune responses. To investigate the immunosuppressive effects induced by interactions between these proteins and the ability to form such multi-protein complexes as receptors and ligands we used quantitative and qualitative experimental approaches. We analyzed a variety of cancer cell lines and primary cancer samples as well as embryonic cell lines and primary fetal samples. We were able to not only verify for the first time that galectin-9 is a ligand of VISTA, but we were also able to determine that the same mechanisms used by embryonic cells to adapt to the mother's immune system can be reused later in life by cancer cells to inhibit cytotoxic immune responses. Furthermore, we were able to prove that each of these proteins is supported by the TGF-β - Smad-3 pathway, which is also able to self-sustain the production of TGF-β in an autocrine/paracrine fashion. Data gained during the investigation of galectin-9 expression levels within other organisms also indicate that this protein is evolutionary conserved. Our results clearly show that understanding the exact mechanisms of this pathway will allow us to develop targeted, personalized and easily applicable immunotherapy in the future by determining the key factors in individual tumour types focusing on the Tim-3 - galectin-9 - VISTA pathway

    Macrophage Differentiation and Polarization Regulate the Release of the Immune Checkpoint Protein V-Domain Ig Suppressor of T Cell Activation.

    Get PDF
    Recently, the V-domain immunoglobulin suppressor of T-cell activation (VISTA) was identified as a negative immune checkpoint regulator (NCR) that is mainly expressed in hematopoietic cells. Preclinical studies have shown that VISTA blockade results in impeded tumor growth and improved survival. Nevertheless, little is known about the physiological role of VISTA expression in macrophages. This study focused on the differential expression of VISTA in human monocytes and macrophages in order to elucidate a putative role of VISTA regulation upon macrophage polarization and activation. We observed that human peripheral monocytes constitutively release soluble VISTA, which was regulated via matrix metalloproteinases. However, monocyte stimulation with cytokines that induce macrophage differentiation, such as granulocyte-macrophage colony-stimulating (GM-CSF) and macrophage colony-stimulating factor (M-CSF), substantially reduced soluble VISTA release. VISTA release was further affected by various pro- and anti-inflammatory stimuli that led to macrophage polarization, where activated M1 macrophages generally released more VISTA than M2 macrophages. Additionally, we observed that stimulation of activated macrophages with the toll-like receptor 4 ligand lipopolysaccharide (LPS) led to a further decrease of soluble VISTA release. Moreover, we found that soluble VISTA impairs T cell cytotoxic activity but did not induce their programmed death. Our results suggest that VISTA is constantly produced and released in the peripheral blood where it may contribute to peripheral tolerance

    Activation of immune evasion machinery is a part of the process of malignant transformation of human cells.

    Get PDF
    Malignant transformation of human cells is associated with their re-programming which results in uncontrolled proliferation and in the same time biochemical activation of immunosuppressive pathways which form cancer immune evasion machinery. However, there is no conceptual understanding of whether immune evasion machinery pathways and expression of immune checkpoint proteins form a part of the process of malignant transformation or if they are triggered by T lymphocytes and natural killers (NK) attempting to attack cells which are undergoing or already underwent malignant transformation. To address this fundamental question, we performed experimental malignant transformation of BEAS-2B human bronchial epithelium cells and RC-124 non-malignant human kidney epithelial cells using bracken extracts containing carcinogenic alkaloid called ptaquiloside. This transformation led to a significant upregulation of cell proliferation velocity and in the same time led to a significant upregulation in expression of key immune checkpoint proteins - galectin-9, programmed death ligand 1 (PD-L1), indoleamine 2,3-dioxygenase (IDO1). Their increased expression levels were in line with upregulation of the levels and activities of HIF-1 transcription complex and transforming growth factor beta type 1 (TGF-β)-Smad3 signalling pathway. When co-cultured with T cells, transformed epithelial cells displayed much higher and more efficient immune evasion activity compared to original non-transformed cells. Therefore, this work resolved a very important scientific and clinical question and suggested that cancer immune evasion machinery is activated during malignant transformation of human cells regardless the presence of immune cells in microenvironment

    T lymphocytes induce human cancer cells derived from solid malignant tumors to secrete galectin-9 which facilitates immunosuppression in cooperation with other immune checkpoint proteins.

    Get PDF
    BACKGROUND Galectin-9 is a member of the family of lectin proteins and crucially regulates human immune responses, particularly because of its ability to suppress the anticancer activities of T lymphocytes and natural killer cells. Recent evidence demonstrated that galectin-9 is highly expressed in a wide range of human malignancies including the most aggressive tumors, such as high-grade glioblastomas and pancreatic ductal adenocarcinomas, as well as common malignancies such as breast, lung and colorectal cancers. However, solid tumor cells at rest are known to secrete either very low amounts of galectin-9 or, in most of the cases, do not secrete it at all. Our aims were to elucidate whether T cells can induce galectin-9 secretion in human cancer cells derived from solid malignant tumors and whether this soluble form displays higher systemic immunosuppressive activity compared with the cell surface-based protein. METHODS A wide range of human cancer cell lines derived from solid tumours, keratinocytes and primary embryonic cells were employed, together with helper and cytotoxic T cell lines and human as well as mouse primary T cells. Western blot analysis, ELISA, quantitative reverse transcriptase-PCR, on-cell Western and other measurement techniques were used to conduct the study. Results were validated using in vivo mouse model. RESULTS We discovered that T lymphocytes induce galectin-9 secretion in various types of human cancer cells derived from solid malignant tumors. This was demonstrated to occur via two differential mechanisms: first by translocation of galectin-9 onto the cell surface followed by its proteolytic shedding and second due to autophagy followed by lysosomal secretion. For both mechanisms a protein carrier/trafficker was required, since galectin-9 lacks a secretion sequence. Secreted galectin-9 pre-opsonised T cells and, following interaction with other immune checkpoint proteins, their activity was completely attenuated. As an example, we studied the cooperation of galectin-9 and V-domain Ig-containing suppressor of T cell activation (VISTA) proteins in human cancer cells. CONCLUSION Our results underline a crucial role of galectin-9 in anticancer immune evasion. As such, galectin-9 and regulatory pathways controlling its production should be considered as key targets for immunotherapy in a large number of cancers

    Expression of the Immune Checkpoint Protein VISTA Is Differentially Regulated by the TGF-β1 - Smad3 Signaling Pathway in Rapidly Proliferating Human Cells and T Lymphocytes.

    Get PDF
    Immune checkpoint proteins play crucial roles in human embryonic development but are also used by cancer cells to escape immune surveillance. These proteins and biochemical pathways associated with them form a complex machinery capable of blocking the ability of cytotoxic immune lymphoid cells to attack cancer cells and, ultimately, to fully suppress anti-tumor immunity. One of the more recently discovered immune checkpoint proteins is V-domain Ig-containing suppressor of T cell activation (VISTA), which plays a crucial role in anti-cancer immune evasion pathways. The biochemical mechanisms underlying regulation of VISTA expression remain unknown. Here, we report for the first time that VISTA expression is controlled by the transforming growth factor beta type 1 (TGF-β)-Smad3 signaling pathway. However, in T lymphocytes, we found that VISTA expression was differentially regulated by TGF-β depending on their immune profile. Taken together, our results demonstrate the differential biochemical control of VISTA expression in human T cells and various types of rapidly proliferating cells, including cancer cells, fetal cells and keratinocytes

    Functional role of galectin-9 in directing human innate immune reactions to Gram-negative bacteria and T cell apoptosis

    Get PDF
    Galectin-9 is a member of the galectin family of proteins, which were first identified to specifically bind to carbohydrates containing β-galactosides. Galectin-9 is conserved through evolution and recent evidence demonstrated its involvement in innate immune reactions to bacterial infections as well as the suppression of cytotoxic immune responses of T and natural killer cells. However, the molecular mechanisms underlying such differential immunological functions of galectin-9 remain largely unknown. In this work we confirmed that soluble galectin-9 derived from macrophages binds to Gram-negative bacteria by interacting with lipopolysaccharide (LPS), which forms their cell wall. This opsonisation effect most likely interferes with the mobility of bacteria leading to their phagocytosis by innate immune cells. Galectin-9-dependent opsonisation also promotes the innate immune reactions of macrophages to these bacteria and significantly enhances the production of proinflammatory cytokines – interleukin (IL) 6, IL-1β and tumour necrosis factor alpha (TNF-α). In contrast, galectin9 did not bind peptidoglycan (PGN), which forms the cell wall of Gram-positive bacteria. Moreover, galectin-9 associated with cellular surfaces (studied in primary human embryonic cells) was not involved in the interaction with bacteria or bacterial colonisation. However, galectin-9 expressed on the surface of primary human embryonic cells, as well as soluble forms of galectin-9, were able to target T lymphocytes and caused apoptosis in T cells expressing granzyme B. Furthermore, “opsonisation” of T cells by galectin-9 led to the translocation of phosphatidylserine onto the cell surface and subsequent phagocytosis by macrophages through Tim-3, the receptor, which recognises both galectin-9 and phosphatidylserine as ligands

    High Mobility Group Box 1 (HMGB1) Induces Toll-Like Receptor 4-Mediated Production of the Immunosuppressive Protein Galectin-9 in Human Cancer Cells

    Get PDF
    High mobility group box 1 (HMGB1) is a non-histone protein which is predominantly localised in the cell nucleus. However, stressed, dying, injured or dead cells can release this protein into the extracellular matrix passively. In addition, HMGB1 release was observed in cancer and immune cells where this process can be triggered by various endogenous as well as exogenous stimuli. Importantly, released HMGB1 acts as a so-called “danger signal” and could impact on the ability of cancer cells to escape host immune surveillance. However, the molecular mechanisms underlying the functional role of HMGB1 in determining the capability of human cancer cells to evade immune attack remain unclear. Here we report that the involvement of HMGB1 in anti-cancer immune evasion is determined by Toll-like receptor (TLR) 4, which recognises HMGB1 as a ligand. We found that HGMB1 induces TLR4-mediated production of transforming growth factor beta type 1 (TGF-β), displaying autocrine/paracrine activities. TGF-β induces production of the immunosuppressive protein galectin-9 in cancer cells. In TLR4-positive cancer cells, HMGB1 triggers the formation of an autocrine loop which induces galectin-9 expression. In malignant cells lacking TLR4, the same effect could be triggered by HMGB1 indirectly through TLR4-expressing myeloid cells present in the tumour microenvironment (e. g. tumour-associated macrophages)

    Transforming growth factor beta type 1 (TGF-B) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells

    Get PDF
    Galectin-9 is one of the key proteins employed by a variety of human malignancies to suppress anti-cancer activities of cytotoxic lymphoid cells and thus escape immune surveillance. Human cancer cells in most cases express higher levels of galectin-9 compared to non-transformed cells. However, the biochemical mechanisms underlying this phenomenon remain unclear. Here we report for the first time that in human cancer as well as embryonic cells, the transcription factors hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are involved in upregulation of transforming growth factor beta 1 (TGF-β1) expression, leading to activation of the transcription factor Smad3 through autocrine action. This process triggers upregulation of galectin-9 expression in both malignant (mainly in breast and colorectal cancer as well as acute myeloid leukaemia (AML)) and embryonic cells. The effect, however, was not observed in mature non-transformed human cells. TGF-β1-activated Smad3 therefore displays differential behaviour in human cancer and embryonic vs non-malignant cells. This study uncovered a self-supporting biochemical mechanism underlying high levels of galectin-9 expression operated by the human cancer and embryonic cells employed in our investigations. Our results suggest the possibility of using the TGF-β1 signalling pathway as a potential highly efficient target for cancer immunotherapy

    L-Kynurenine participates in cancer immune evasion by downregulating hypoxic signaling in T lymphocytes

    Get PDF
    ABSTRACTMalignant tumors often escape anticancer immune surveillance by suppressing the cytotoxic functions of T lymphocytes. While many of these immune evasion networks include checkpoint proteins, small molecular weight compounds, such as the amino acid L-kynurenine (LKU), could also substantially contribute to the suppression of anti-cancer immunity. However, the biochemical mechanisms underlying the suppressive effects of LKU on T-cells remain unclear. Here, we report for the first time that LKU suppresses T cell function as an aryl hydrocarbon receptor (AhR) ligand. The presence of LKU in T cells is associated with AhR activation, which results in competition between AhR and hypoxia-inducible factor 1 alpha (HIF-1α) for the AhR nuclear translocator, ARNT, leading to T cell exhaustion. The expression of indoleamine 2,3-dioxygenase 1 (IDO1, the enzyme that leads to LKU generation) is induced by the TGF-β-Smad-3 pathway. We also show that IDO-negative cancers utilize an alternative route for LKU production via the endogenous inflammatory mediator, the high mobility group box 1 (HMGB-1)-interferon-gamma (IFN-γ) axis. In addition, other IDO-negative tumors (like T-cell lymphomas) trigger IDO1 activation in eosinophils present in the tumor microenvironment (TME). These mechanisms suppress cytotoxic T cell function, and thus support the tumor immune evasion machinery
    corecore