97 research outputs found

    Many-spin effects in inelastic neutron scattering and electron paramagnetic resonance of molecular nanomagnets

    Full text link
    Many molecular magnetic clusters, such as single-molecule magnets, are characterized by spin ground states with defined total spin S exhibiting zero-field-splittings. In this work, the spectroscopic intensities of the transitions within the ground-state multiplet are analyzed. In particular, the effects of a mixing with higher-lying spin multiplets, which is produced by anisotropic interactions and is neglected in the standard single-spin description, are investigated systematically for the two experimental techniques of inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR), with emphasis on the former technique. The spectroscopic transition intensities are calculated analytically by constructing corresponding effective spin operators perturbationally up to second order and consequently using irreducible tensor operator techniques. Three main effects of spin mixing are observed. Firstly, a pronounced dependence of the INS intensities on the momentum transfer Q, with a typical oscillatory behavior, emerges in first order, signaling the many-spin nature of the wave functions in exchange-coupled clusters. Secondly, as compared to the results of a first-order calculation, the intensities of the transitions within the spin multiplet are affected differently by spin mixing. This allows one, thirdly, to differentiate the higher-order contributions to the cluster magnetic anisotropy which come from the single-ion ligand-field terms and spin mixing, respectively. The analytical results are illustrated by means of the three examples of an antiferromagnetic heteronuclear dimer, the Mn-[3 x 3] grid molecule, and the single-molecule magnet Mn12.Comment: 18 pages, 3 figures, REVTEX4, to appear in PR

    Itinerancy and Hidden Order in URu2Si2URu_2Si_2

    Full text link
    We argue that key characteristics of the enigmatic transition at T0=17.5KT_0= 17.5K in URu2Si2URu_2Si_2 indicate that the hidden order is a density wave formed within a band of composite quasiparticles, whose detailed structure is determined by local physics. We expand on our proposal (with J.A. Mydosh) of the hidden order as incommnesurate orbital antiferromagnetism and present experimental predictions to test our ideas. We then turn towards a microscopic description of orbital antiferromagnetism, exploring possible particle-hole pairings within the context of a simple one-band model. We end with a discussion of recent high-field and thermal transport experiment, and discuss their implications for the nature of the hidden order.Comment: 18 pages, 7 figures. v2 contains added referenc

    Spectral hole burning: examples from photosynthesis

    Get PDF
    The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research

    ATP release via anion channels

    Get PDF
    ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4- in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed

    Concurrency control for multiuser editors (abstract)

    No full text

    Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores

    No full text

    Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors

    No full text
    Perforated patch clamp recordings were performed on cultured superficial neonatal rat dorsal horn (DH) spinal cord neurones in order to study the presynaptic modulation of GABA release at unitary synaptic connections. Since ATP can be coreleased with GABA at about two-thirds of GABAergic synapses between DH neurones, and can be rapidly metabolized to adenosine in the extracellular space, we investigated the potential role of A1 adenosine receptors and GABAB receptors which might function as inhibitory autoreceptors. Adenosine and GABAB receptor agonists reduced the amplitude of electrically evoked GABAergic inhibitory postsynaptic currents (eIPSCs) as well as the frequency of GABAergic miniature IPSCs, suggesting a presynaptic action of these substances. The actions of adenosine were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The effects of adenosine and GABAB agonists were occlusive, indicating a functional convergence of the signalling pathways engaged by A1 and GABAB receptors. A1 and GABAB antagonists increased the amplitude of eIPSCs in a supra-additive manner, suggesting a tonic activation of these receptors by ambient adenosine and GABA. Moreover, using trains of electrical stimulations, we were able to unravel a phasic (activity-dependent) activation of presynaptic A1 and GABAB autoreceptors only in the case of neurones coreleasing ATP and GABA, despite the presence of functional presynaptic A1 and GABAB receptors on all GABAergic DH neurones. This selective, convergent and activity-dependent inhibition of GABA release by A1 and GABAB autoreceptors might modulate the integrative properties of postsynaptic DH neurones under physiological conditions and/or during the development of pathological pain states
    corecore