10 research outputs found

    Compact Saloplastic Poly(Acrylic Acid)/Poly(Allylamine) Complexes: Kinetic Control Over Composition, Microstructure, and Mechanical Properties

    Get PDF
    Durable compact polyelectrolyte complexes (CoPECs) with controlled porosity and mechanical properties are prepared by ultracentrifugation. Because thestarting materials, poly(allylamine hydrochloride) (PAH) and poly(acrylic acidsodium salt) (PAA), are weak acids/bases, both composition and morphology are controlled by solution pH. In addition, the nonequilibrium nature of polyelectrolyte complexation can be exploited to provide a range of compositions and porosities under the infl uence of polyelectrolyte addition order and speed, and concentration. Confocal microscopy shows these “saloplastic” materials to be highly porous, where pore formation is attributed to a combination of deswelling of the polyelectrolyte matrix and expansion of small inhomogenities by osmotic pressure. The porosity (15–70%) and the pore size ( < 5 μ m to > 70 μ m) of these materials can be tuned by adjusting the PAA to PAH ratio, the salt concentration, and the pH. The modulus of these CoPECs depends on the ratio of the two polyelectrolytes, with stoichiometric complexes being the stiffest due to optimized charge pairing, which correlates with maximized crosslinking density. Mechanical properties, pore sizes, and pore density of these materials make them well suited to three dimensional supports for tissue engineering applications

    Catalytic Saloplastics: Alkaline Phosphatase Immobilized and Stabilized in Compacted Polyelectrolyte Complexes

    Get PDF
    Novel biochemically active compact polyelectrolyte complexes (CoPECs) are obtained through a simple coprecipitation and compaction procedure. As shown for the system composed of poly(acrylic acid) (PAA) and poly(allylamine) (PAH) as polyelectrolytes and alkaline phosphatase (ALP) as enzyme, the enzyme can be firmly immobilized into these materials. The ALP not only remains active in these materials, but the matrix also enhances the specific activity of the enzyme while protecting it from deactivation at higher temperature. The presence of the matrix allows fine control and substantial enhancement of reaction rates by varying the salt concentration of the contacting solution or temperature. The excellent reusability, together with the ease of co-immobilizing other useful components, such as magnetic particles, allowing facile handling of the CoPECs, makes these materials interesting candidates for variable scaffolds for the immobilization of enzymes for small- and large-scale enzyme-catalyzed processes

    On the Benefits of Rubbing Salt in the Cut: Self-Healing of Saloplastic PAA/PAH Compact Polyelectrolyte Complexes

    Get PDF
    The inherent room temperature mending and self-healing properties of saloplastic PAA/PAH CoPECs are studied. After ultracentrifugation of PAA/PAH polyelectrolyte complexes, tough, elastic materials are obtained that undergo self-healing facilitated by salt. At intermediate salt concentrations the CoPECs remain elastic enough to recover their original shape while the chains are mobile enough to repair the cut, thus leading to actual self-healing behavior

    The preparation of HEMA-MPC films for ocular drug delivery

    Get PDF
    There is a need to prolong drug residence time using a biocompatible formulation in the subconjunctival space after surgery to treat glaucoma. Drug releasing discs were prepared with 2-(hydroxyethyl)methacrylate (HEMA) and 2-methacryloyl-oxyethyl phosphorylcholine (MPC). The ratio of bound water (Wb) to free water (Wf) ratio increased from 1:0.3 to 1:6.8 with increasing MPC (0 to 50%, w/w). The optimal balance between water content, SR and mechanical strength were obtained with 10% MPC (w/w) hydrogels. Water-alcohol mixtures were examined to facilitate loading of poorly soluble drugs, and they showed greater hydrogel swelling than either water or alcohol alone. The SR was 1.2 ± 0.02 and 3.3 ± 0.1 for water and water:ethanol (1:1) respectively. HEMA-MPC (10%) discs were loaded with dexamethasone using either water:ethanol (1:1) or methanol alone. Drug release was examined in an outflow rig model that mimics the subconjunctival space in the eye. Dexamethasone loading increased from 0.3 to 1.9 mg/disc when the solvent was changed from water:ethanol (1:1) to methanol with the dexamethasone half-life (t½) increasing from 1.9 to 9.7 days respectively. These encouraging results indicate that HEMA-MPC hydrogels have the potential to sustain the residence time of a drug in the subconjunctival space of the eye

    Graphite, Carbonaceous Materials and Organic Solids as Active Electrodes in Metal‐Free Batteries

    No full text
    corecore