139 research outputs found

    Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in <i>Arabidopsis</i>

    Get PDF
    Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter–green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis

    Plantenæringsstoffer:økologiske atomer med bioteknologisk potentiale

    Get PDF

    Peering into the separate roles of root and shoot cytosolic glutamine synthetase 1;2 by use of grafting experiments in Arabidopsis

    No full text
    Cytosolic glutamine synthetase 1;2 plays an important role in the primary nitrogen assimilation in roots. Based on characterization of the knockout mutant gln1;2 we have recently demonstrated that Gln1;2 is also essential for ammonium handling in shoots. Here we built reciprocally grafted plants between wild type (Wt) and gln1;2 in order to separate the root and shoot roles of Gln1;2. Significant reduction in silique number and seed yield were observed in the grafted plants 1;2(shoot)/Wt(root) relative to Wt(shoot)/1;2(root) and Wt(shoot)/Wt(root). Shoot Gln1;2 thus played a crucial role for seed production. Tracing experiments with (15)N showed that the relative nitrogen remobilization from vegetative organs to seeds in gln1;2 was just as efficient as in the Wt plants. This was the case although the total quantity of nitrogen in gln1;2 was significantly lower compared to that in the Wt. We conclude that the functions of shoot Gln1;2 are primarily associated with internal N signaling for establishment of seed yield capacity rather than with nitrogen remobilization
    corecore