2 research outputs found

    Role of the B1 short arm in laminin self-assembly

    No full text
    Laminin self-assembles into a basement membrane polymer through specific low-affinity interactions. Recently, it was shown that the terminal short-arm domain (domains VI and V) of the B1 chain (fragment E4) possesses one of the laminin self-interaction sites [Schittny, J. C. & Yurchenco, P. D. (1990) J. Cell BioE. 110, 825-8321, but that the binding partner(s) of this domain is unknown, Using affinity retardation chromatography we now investigate the domain(s) fragment E4 binds to. The elution of E4 was clearly retarded on immobilized laminin and fragment El’ (three-chain short-arm complex excluding the distal part of the B1 chain), but not on immobilized E4 in calcium containing buffer and at 37°C. Under the same conditions, El ’ strongly interacts with immobilized E4. In addition, El ’ is able to non-covalently cross-link soluble E4 to immobilized E4. No further interaction of laminin and E4 with additional fragments (Pl’, A, B2 and B1 chain shortarm complex without B1-domains VI-IV and without globules; E8, distal long arm and G1-3; E3, long-arm G subdomains 4 and 5) could be demonstrated. These data are interpreted as evidence that (a) the primary laminin-laminin bonds are formed between the short arms of laminin, that (b) the terminal B1 short-arm domain (E4) can interact with the short arm(s) of the A and/or B2 chain(s) (domain El’), but does not self-interact, and that (c) due to at least three self-binding sites, lamini

    Early life exposure to nicotine modifies lung gene response after elastase-induced emphysema

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is among the top 5 causes of mortality in the world and can develop as a consequence of genetic and/or environmental factors. Current efforts are focused on identifying early life insults and how these contribute to COPD development. In line with this, our study focuses on the influence of early life nicotine exposure and its potential impact on (a) lung pulmonary functions, and (b) elastase-induced emphysema in adulthood.Methods: To address this hypothesis, we developed a model of 2 hits, delivered at different time points: mouse pups were first exposed to nicotine/placebo in utero and during lactation, and then subsequently received elastase/placebo at the age of 11 weeks. The effect of nicotine pretreatment and elastase instillation was assessed by (a) measurement of pulmonary function at post-elastase day (ped) 21, and (b) transcriptomic profiling at ped3 and 21, and complementary protein determination. Statistical significance was determined by 3- and 2-way ANOVA for pulmonary functions, and RNAseq results were analyzed using the R project.Results: We did not observe any impact of nicotine pre- and early post-natal exposure compared to control samples on lung pulmonary functions in adulthood, as measured by FLEXIVENT technology. After elastase instillation, substantial lung damage was detected by x-ray tomography and was accompanied by loss in body weight at ped3 as well as an increase in cell numbers, inflammatory markers in BAL and lung volume at ped21. Lung functions showed a decrease in elastance and an increase in deep inflation volume and pressure volume (pv) loop area in animals with emphysema at ped21. Nicotine had no effect on elastance and deep inflation volume, but did affect the pv loop area in animals with emphysema at ped21. Extensive transcriptomic changes were induced by elastase at ped3 both in the nicotine-pretreated and the control samples, with several pathways common to both groups, such as for cell cycle, DNA adhesion and DNA damage. Nicotine pretreatment affected the number of lymphocytes present in BAL after elastase instillation and some of the complement pathway related proteins, arguing for a slight modification of the immune response, as well as changes related to general body metabolism. The majority of elastase-induced transcriptomic changes detected at ped3 had disappeared at ped21. In addition, transcriptomic profiling singled out a common gene pool that was independently activated by nicotine and elastase.Conclusions: Our study reports a broad spectrum of transient transcriptomic changes in mouse emphysema and identifies nicotine as influencing the emphysema-associated immune system response.</p
    corecore