22 research outputs found

    mTORtuous effect on the elastic heart

    Get PDF
    Both during normal physiological development as well as in the face of cardiac stress, the heart exhibits enormous plasticity in growth, remodeling, and atrophy. Central to this adaptive ability is the heart’s metabolic capacity to react quickly both anabolically and catabolically in order to maintain cardiac output. In response to hemodynamic stress, the heart adapts to maintain overall contractile function via pathological remodeling that often includes cardiomyocyte hypertrophy as well as changes in cardiomyocyte metabolism that eventually lead to contractile dysfunction and heart failure. It is unclear as to whether the metabolic changes that accompany pathological hypertrophy are adaptive or maladaptive; however, as in most complex biological systems, the answer likely resides somewhere in the middle. Goodwin et al. demonstrated in 1998 that hemodynamic stress increases carbohydrate use for ATP generation and induces cardiac remodeling. Numerous subsequent studies have attributed the change in metabolism and cardiac remodeling to activation of the mammalian (or mechanistic) target of rapamycin (mTOR), a kinase that is a primary regulator of myocardial protein synthesis. Recent experimental models that manipulate cardiac metabolism and mTOR signaling have provided new insights into the relationship between metabolic and structural remodeling (reviewed in detail by Kundu et al.). One hopes that such models will identify metabolic changes that precede remodeling in order to find therapeutic targets for cardiac disease

    Emerging evidence of coding mutations in the ubiquitin-proteasome system associated with cerebellar ataxias

    Get PDF
    Cerebellar ataxia (CA) is a disorder associated with impairments in balance, coordination, and gait caused by degeneration of the cerebellum. The mutations associated with CA affect functionally diverse genes; furthermore, the underlying genetic basis of a given CA is unknown in many patients. Exome sequencing has emerged as a cost-effective technology to discover novel genetic mutations, including autosomal recessive CA (ARCA). Five recent studies that describe how exome sequencing performed on a diverse pool of ARCA patients revealed 14 unique mutations in STUB1, a gene that encodes carboxy terminus of Hsp70-interacting protein (CHIP). CHIP mediates protein quality control through chaperone and ubiquitin ligase activities and is implicated in alleviating proteotoxicity in several neurodegenerative diseases. However, these recent studies linking STUB1 mutations to various forms of ataxia are the first indications that CHIP is directly involved in the progression of a human disease. Similar exome-sequencing studies have revealed novel mutations in ubiquitin-related proteins associated with CA and other neurological disorders. This review provides an overview of CA, describes the benefits and limitations of exome sequencing, outlines newly discovered STUB1 mutations, and theorizes on how CHIP and other ubiquitin-related proteins function to prevent neurological deterioration

    Modeling the transition from decompensated to pathological hypertrophy

    Get PDF
    Background--Long-chain acyl-CoA synthetases (ACSL) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs. Cardiac-specific ACSL1 temporal knockout at 2 months results in a shift from FA oxidation toward glycolysis that promotes mTORC1-mediated ventricular hypertrophy. We used unbiased metabolomics and gene expression analyses to examine the early effects of genetic inactivation of fatty acid oxidation on cardiac metabolism, hypertrophy development, and function. Methods and Results--Global cardiac transcriptional analysis revealed differential expression of genes involved in cardiac metabolism, fibrosis, and hypertrophy development in Acsl1 H-/- hearts 2 weeks after Acsl1 ablation. Comparison of the 2- and 10-week transcriptional responses uncovered 137 genes whose expression was uniquely changed upon knockdown of cardiac ACSL1, including the distinct upregulation of fibrosis genes, a phenomenon not observed after complete ACSL1 knockout. Metabolomic analysis identified metabolites altered in hearts displaying partially reduced ACSL activity, and rapamycin treatment normalized the cardiac metabolomic fingerprint. Conclusions--Short-term cardiac-specific ACSL1 inactivation resulted in metabolic and transcriptional derangements distinct from those observed upon complete ACSL1 knockout, suggesting heart-specific mTOR (mechanistic target of rapamycin) signaling that occurs during the early stages of substrate switching. The hypertrophy observed with partial Acsl1 ablation occurs in the context of normal cardiac function and is reminiscent of a physiological process, making this a useful model to study the transition from physiological to pathological hypertrophy

    Global gene expression profiling of a mouse model of ovarian clear cell carcinoma caused by ARID1A and PIK3CA mutations implicates a role for inflammatory cytokine signaling

    Get PDF
    Ovarian clear-cell carcinoma (OCCC) is an aggressive form of epithelial ovarian cancer (EOC). OCCC represents 5-25% of all EOC incidences and is the second leading cause of death from ovarian cancer (Glasspool and McNeish, 2013) [1]. A recent publication by Chandler et al. reported the first mouse model of OCCC that resembles human OCCC both genetically and histologically by inducing a localized deletion of ARID1A and the expression of the PIK3CAH1047R substitution mutation (Chandler et al., 2015) [2]. We utilized Affymetrix Mouse Gene 2.1 ST arrays for the global gene expression profiling of mouse primary OCCC tumor samples and animal-matched normal ovaries to identify cancer-dependent gene expression. We describe the approach used to generate the differentially expressed genes from the publicly available data deposited at the Gene Expression Omnibus (GEO) database under the accession number GSE57380. These data were used in cross-species comparisons to publically available human OCCC gene expression data and allowed the identification of coordinately regulated genes in both mouse and human OCCC and supportive of a role for inflammatory cytokine signaling in OCCC pathogenesis (Chandler et al., 2015) [2]

    Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1: Application of pre-mRNA analysis and chromatin immunoprecipitation to assess formation of functional transcriptional complexes

    Get PDF
    The homeodomain factor Pdx-1 regulates an array of genes in the developing and mature pancreas, but whether regulation of each specific gene occurs by a direct mechanism (binding to promoter elements and activating basal transcriptional machinery) or an indirect mechanism (via regulation of other genes) is unknown. To determine the mechanism underlying regulation of the insulin gene by Pdx-1, we performed a kinetic analysis of insulin transcription following adenovirus-mediated delivery of a small interfering RNA specific for pdx-1 into insulinoma cells and pancreatic islets to diminish endogenous Pdx-1 protein, insulin transcription was assessed by measuring both a long half-life insulin mRNA (mature mRNA) and a short half-life insulin pre-mRNA species by real-time reverse transcriptase-PCR. Following progressive knock-down of Pdx-1 levels, we observed coordinate decreases in pre-mRNA levels (to about 40% of normal levels at 72 h). In contrast, mature mRNA levels showed strikingly smaller and delayed declines, suggesting that the longer half-life of this species underestimates the contribution of Pdx-1 to insulin transcription. Chromatin immunoprecipitation assays revealed that the decrease in insulin transcription was associated with decreases in the occupancies of Pdx-1 and p300 at the proximal insulin promoter. Although there was no corresponding change in the recruitment of RNA polymerase II to the proximal promoter, its recruitment to the insulin coding region was significantly reduced. Our results suggest that Pdx-1 directly regulates insulin transcription through formation of a complex with transcriptional coactivators on the proximal insulin promoter. This complex leads to enhancement of elongation by the basal transcriptional machinery. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc

    The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells

    Get PDF
    We have previously described rat insulinoma INS-1 derived cell lines with robust or poor glucose-stimulated insulin secretion (GSIS). In the current study, we have further resolved these lines into three classes: class 1, glucose-unresponsive glucagon-expressing; class 2, glucose-unresponsive glucagon-negative; and class 3, glucose-responsive glucagon-negative. The transcription factor Nkx2.2 was expressed with relative abundance of 3.3, 1.0, and 1.0 in class 1, class 2, and class 3 cells, respectively, whereas Nkx6.1 expression had the opposite trend: 1.0, 2.6, and 6.4 in class 1, class 2, and class 3 cells, respectively. In class 1 cells, overexpressed Nkx6.1 suppressed glucagon expression but did not affect the levels of several other prominent beta cell transcription factors. RNA interference (RNAi)-mediated suppression of Nkx6.1 in class 3 cells resulted in a doubling of glucagon mRNA, with no effect on Pdx1 levels, whereas suppression of Pdx1 in class 3 cells caused a 12-fold increase in glucagon transcript levels, demonstrating independent effects of Nkx6.1 and Pdx1 on glucagon expression in beta cell lines. RNAi-mediated suppression of Nkx6.1 expression in class 3 cells also caused a decrease in GSIS from 13.9- to 3.7-fold, whereas suppression of Pdx1 reduced absolute amounts of insulin secretion without affecting fold response. Finally, RNAi-mediated suppression of Nkx6.1 mRNA in primary rat islets was accompanied by a significant decrease in GSIS relative to control cells. In sum, our studies have revealed roles for Nkx6.1 in suppression of glucagon expression and control of GSIS in islet beta cells

    Clinical Evidence Supports a Protective Role for CXCL5 in Coronary Artery Disease

    Get PDF
    Our goal was to measure the association of CXCL5 and molecular phenotypes associated with coronary atherosclerosis severity in patients at least 65 years old. CXCL5 is classically defined as a proinflammatory chemokine, but its role in chronic inflammatory diseases, such as coronary atherosclerosis, is not well defined. We enrolled individuals who were at least 65 years old and undergoing diagnostic cardiac catheterization. Coronary artery disease (CAD) severity was quantified in each subject via coronary angiography by calculating a CAD score. Circulating CXCL5 levels were measured from plasma, and both DNA genotyping and mRNA expression levels in peripheral blood mononuclear cells were quantified via microarray gene chips. We observed a negative association of CXCL5 levels with CAD at an odds ratio (OR) of 0.46 (95% CI, 0.27–0.75). Controlling for covariates, including sex, statin use, hypertension, hyperlipidemia, obesity, self-reported race, smoking, and diabetes, the OR was not significantly affected [OR, 0.54 (95% CI, 0.31–0.96)], consistent with a protective role for CXCL5 in coronary atherosclerosis. We also identified 18 genomic regions with expression quantitative trait loci of genes correlated with both CAD severity and circulating CXCL5 levels. Our clinical findings are consistent with the emerging link between chemokines and atherosclerosis and suggest new therapeutic targets for CAD

    Host transcriptional responses in nasal swabs identify potential SARS-CoV-2 infection in PCR negative patients

    Get PDF
    We analyzed RNA sequencing data from nasal swabs used for SARS-CoV-2 testing. 13% of 317 PCR-negative samples contained over 100 reads aligned to multiple regions of the SARS-CoV-2 genome. Differential gene expression analysis compares the host gene expression in potential false-negative (FN: PCR negative, sequencing positive) samples to subjects with multiple SARS-CoV-2 viral loads. The host transcriptional response in FN samples was distinct from true negative samples (PCR & sequencing negative) and similar to low viral load samples. Gene Ontology analysis shows viral load-dependent changes in gene expression are functionally distinct; 23 common pathways include responses to viral infections and associated immune responses. GO analysis reveals FN samples had a high overlap with high viral load samples. Deconvolution of RNA-seq data shows similar cell content across viral loads. Hence, transcriptome analysis of nasal swabs provides an additional level of identifying SARS-CoV-2 infection

    Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge

    Get PDF
    Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines

    Applicability of precision medicine approaches to managing hypertension in rural populations

    Get PDF
    As part of the Heart Healthy Lenoir Project, we developed a practice level intervention to improve blood pressure control. The goal of this study was: (i) to determine if single nucleotide polymorphisms (SNPs) that associate with blood pressure variation, identified in large studies, are applicable to blood pressure control in subjects from a rural population; (ii) to measure the association of these SNPs with subjects’ responsiveness to the hypertension intervention; and (iii) to identify other SNPs that may help understand patient-specific responses to an intervention. We used a combination of candidate SNPs and genome-wide analyses to test associations with either baseline systolic blood pressure (SBP) or change in systolic blood pressure one year after the intervention in two genetically defined ancestral groups: African Americans (AA) and Caucasian Americans (CAU). Of the 48 candidate SNPs, 13 SNPs associated with baseline SBP in our study; however, one candidate SNP, rs592582, also associated with a change in SBP after one year. Using our study data, we identified 4 and 15 additional loci that associated with a change in SBP in the AA and CAU groups, respectively. Our analysis of gene-age interactions identified genotypes associated with SBP improvement within different age groups of our populations. Moreover, our integrative analysis identified AQP4-AS1 and PADI2 as genes whose expression levels may contribute to the pleiotropy of complex traits involved in cardiovascular health and blood pressure regulation in response to an intervention targeting hypertension. In conclusion, the identification of SNPs associated with the success of a hypertension treatment intervention suggests that genetic factors in combination with age may contribute to an individual’s success in lowering SBP. If these findings prove to be applicable to other populations, the use of this genetic variation in making patient-specific interventions may help providers with making decisions to improve patient outcomes. Further investigation is required to determine the role of this genetic variance with respect to the management of hypertension such that more precise treatment recommendations may be made in the future as part of personalized medicine
    corecore