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Ovarian clear-cell carcinoma (OCCC) is an aggressive form of epithelial ovarian cancer (EOC). OCCC represents 5–
25% of all EOC incidences and is the second leading cause of death from ovarian cancer (Glasspool and McNeish,
2013) [1]. A recent publication by Chandler et al. reported the first mouse model of OCCC that resembles human
OCCC both genetically and histologically by inducing a localized deletion of ARID1A and the expression of the
PIK3CAH1047R substitution mutation (Chandler et al., 2015) [2]. We utilized Affymetrix Mouse Gene 2.1 ST arrays
for the global gene expression profiling ofmouse primaryOCCC tumor samples and animal-matched normal ova-
ries to identify cancer-dependent gene expression. We describe the approach used to generate the differentially
expressed genes from the publicly available data deposited at the Gene Expression Omnibus (GEO) database
under the accession number GSE57380. These data were used in cross-species comparisons to publically avail-
able human OCCC gene expression data and allowed the identification of coordinately regulated genes in both
mouse and human OCCC and supportive of a role for inflammatory cytokine signaling in OCCC pathogenesis
(Chandler et al., 2015) [2].

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Experimental design, materials and methods

2.1. Mouse model of ovarian clear cell carcinoma

Wemaintained all mice used in this study at The University of North
Carolina at Chapel Hill (UNC) Animal Facility using standard techniques
in accordance with the University's Institutional Animal Care and Use
Committee (IACUC). We performed all surgical procedures in accor-
dancewith the protocols approved by UNC IACUC. To induce genetic re-
combination in the ovarian surface epithelium (OSE), we employed a
modified version of the ex-vivo AdCRE intrabursal delivery method
[3]. First, AdCRE particles (obtained from the University of Iowa Gene
Transfer Core) were diluted in sterile Dulbecco's phosphate buffered sa-
line (dPBS) containing 8 μg/ml polybrene. We anesthetized 8–10 week
old mice and administered a single 5 μl injection of AdCRE particles
(2.5E7 plaque-forming units or pfu) into the right ovarian bursal cavity
of the surgically exposed ovary using a sterile 31 gauge needle. Immedi-
ately following AdCRE injection, we washed the surgically exposed
ovaries thoroughly with sterile 1× dPBS and placed the ovary back
into the abdominal cavity. To control for experimental bias, we
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performed surgeries on multiple occasions and randomized the age-
and genotype-matched non-littermate animals prior to AdCRE injec-
tion. Additionally, we blinded the genotypes to our mouse surgeon
prior to surgery.
2.2. RNA purification and quality control

Total RNA was extracted from pulverized tumor samples or
matched, normal ovaries using the TRIzol method (Invitrogen), follow-
ed by an RNA cleanup step and on-column DNA digestion using the
RNAeasy mini prep kit (Qiagen) according to the manufacturers' in-
structions. We measured the concentration of RNA using both spectro-
scopic (NanoDrop, Thermo Scientific) and fluorometric (Qubit, Life
Technologies) methods (Table 1). All 18 samples were of high purity
(OD260/OD280 ≥ 2.00) and integrity (RIN ≥ 7.0) and used for further
processing.
2.3. Labeling protocol

We used the Beckman Coulter Biomek FXP Laboratory Automation
Workstation with the Target Express setup to prepare the samples
using the WT Expression HT Kit for Robotics (Ambion) to generate
sense-strand cDNA from total RNA followed by fragmentation and the
GeneChip HT Terminal Labeling Kit (Affymetrix) for cDNA labeling.

The fragmented and labeled cDNA was used to prepare a hybridiza-
tion cocktail with the GeneTitan Hybridization Wash and Stain Kit for
WT Arrays (Affymetrix). Hybridization, washing, staining and scanning
of the Affymetrix Mouse Gene 2.1 ST peg plate arrays were carried out
using the GeneTitan MC Instrument (Affymetrix) controlled with the
GeneChip Command Console Software (AGCC). We used Expression
Console Software (Affymetrix) for basic data extraction (CEL files) and
quality control metrics.
2.4. Data processing

Affymetrix CELfileswere normalized using the RobustMultichip Av-
erage (RMA) normalization method using Partek Genomics Suite v6.6
(Partek) using RMA Background Correction, quantile normalization,
logging of probes using base 2, and median polishing for probeset
summarization.
Table 1
RNA sample concentration and purity metrics.

# Description ng/μl OD260/OD280 RIN

1 OV122 1T 8.28E+02 2.08 8.1
2 OV122 2c 5.54E+02 2.09 9.3
3 OV129 1T 1.68E+02 2.06 8.6
4 OV129 c 5.33E+02 2.11 9.3
5 OV137 1T 2.86E+02 2.06 8.4
6 OV137 c 8.52E+02 2.10 9.7
7 OV139 1T 3.90E+02 2.04 8.4
8 OV139 c 5.72E+02 2.10 9.3
9 OV153 1T 1.47E+03 2.09 8.8
10 OV153 2c 7.00E+02 2.09 9.6
11 OV166 1T 1.76E+03 2.05 8.8
12 OV166 2c 1.08E+03 2.09 9.4
13 OV179 1T 7.89E+02 2.08 9.6
14 OV179 2c 2.19E+02 2.05 8.3
15 OV190 1T 1.07E+03 2.08 8.9
16 OV190 2c 1.36E+02 2.03 7.0
17 OV127 1T 1.21E+02 2.09 7.5
18 OV127 c 3.86E+02 2.06 9.3

The table contains the sample identification numbers (#) and description in the format
OVXXX YZ where XXX is the unique animal number, Y is the tissue sample number, and
Z is the tissue classifier as either tumor (T) or matched normal ovary (c). We measured
the RNA concentrations (ng/μl) as well as nucleic acid purity by a ratio of 1 cm pathlength
optical density at 260 and 280 nm (OD260/OD280) and the RNA integrity number (RIN).
2.5. Sample quality control

We analyzed sample quality control by comparing the area under
the curve (AUC) value for a receiver-operating characteristic (ROC), or
ROC curve, plotting the detection of positive controls against the false
detection of negative controls. A value of 1.0 represents a perfect value
and a value of 0.5 illustrates no discernable difference between the pos-
itive and negative controls. All sample values fell within the expected
range of 0.8 to 0.9 (mean = 0.881 ± 0.002, Fig. 1A) [4]. Additionally,
wemeasured themean absolute relative log expression (RLE) thatmea-
sures the signal of each probe set compared to the median signal value
of this probe set in the study. The RLE is useful to our studywith similar
sample types to detect outlier arrays. Using this metric, values greater
than 0.5 indicate high sample variance. We found that the RLE mean
of our samples fell within the expected range of 0.2 to 0.4 (mean =
0.284 ± 0.007, Fig. 1A) [4]. Furthermore, we did not detect any sample
outliers via Tukey boxplots in analyzing the mean intensity of perfect
match (pm) probes and background intensity, measured by the intensi-
ty of mismatch (mm) probes (Fig. 1B).

2.6. Hybridization and labeling quality control

We measured the hybridization bacterial spike-in controls BioB,
BioC, BioD, and CreX (listed from the expected lowest to highest concen-
trations) and detected increasing concentrations of the spike-ins across
all samples consistent with high-quality hybridization. Tukey boxplot
analysis flagged sample #8 (Table 1, OV139 c) as a possible outlier
due to overall decreased intensity (Fig. 1C). Likewise, we monitored
Fig. 1.Quality control metrics ofmicroarrays. (A) The area under the curve (AUC)measur-
ing the detection of positive controls versus false detection of negative controls; and the
relative log expression (RLE) of each probe set across all 18 samples. The dashed line
marks the lower cutoff of 0.8 for AUC outlier detection and the shaded region indicates
the acceptable RLE range of 0.2–0.4. (B) The mean intensity of perfect match (pm) and
mismatch (mm) probes. (C) Intensity of the bacterial gene spike-in controls BioB, BioC,
BioD, and CreX represented by Tukey boxplots. The outlier, sample #8, is indicated. (D) In-
tensity of the polyA-control RNAs lys, phe, thr, and dapwith the dashed line reflecting the
linear increase between lys, phe, and thr.
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labeling quality using the polyA-control RNAs lys, phe, thr, and dap
(listed from the expected lowest to highest concentrations). We
observed the dap signal out of rank order (Fig. 1D); however we did
observe the expected linear trend across lys, phe, and thr [5] and did
not identify any sample outliers (Fig. 1D). Further analysis of additional
arrays run on the GeneTitan system identified a batch problemwith the
dap RNA in the polyA-control kit (Affymetrix, data not shown).

2.7. Outlier analysis and data structure

Our quality control measures flagged sample #8 as a potential outli-
er. To determine if #8 or other samples are outliers, we first compared
the RMA normalized data distribution via box-whiskers plot (Fig. 2A)
and principal component analysis (PCA, Fig. 2B). We did not observe
any skewed samples or outliers using either visualization, respectively.
Further, PCA clearly partitioned the samples by tissue classification
(normal ovary or tumor) across the first principal component (PC1,
24%) indicating that the primary source of variance of these data likely
consists of differences between healthy ovary and the tumor tissue
rather than differences between animals (Fig. 2C). The remaining com-
ponents shown here appear to reflect the variance within the classifica-
tions as seen in the second principal component (PC2, 10%) as well as
Fig. 2.Data structure, unsupervised gene clustering, and differential gene expression analysis. (A
percentiles represented by thewhiskers. (B) Principal component analysis visualized viamatrix
and data represented are scaled to unit standard deviation. (C) PC1 versus PC2 scatterplot with
ellipses categorized by tissue type represent 2 standard deviations. (D) Unsupervised hierarch
dendrogram represents the distance of clusters by Pearson's correlation coefficient. The tissue
respectively. (E) Significance analysis of microarrays plot of observed scores plotted against t
lines indicate the significance threshold based on Δ = 3.54. The genes identified as different
expression, respectively, of these genes in the mouse OCCC tumor tissue compared to normal
false discovery rate (FDR) is provided.
the third and fourth components (PC3 and PC4, 8.0% and 6.6%, respec-
tively) that capture sample variance across the normal ovary samples
(Fig. 2B). In addition to PCA, unsupervised hierarchical clustering (HC)
was used to reveal natural categories in gene expression data sets
(Fig. 2D). Two primary clusters of microarray samples were comprised
solely of either normal ovaries (red) or tumor tissue (blue) biological
replicates. Given these results, we included sample #8 and the corre-
sponding paired sample (#7) with the remainder of the downstream
analyses. Given the clear partitioning of these unsupervised analyses
we expected a large number of differentially expressed genes.
2.8. Detecting differential gene expression

The data as descried thus far was used in Chandler et al. to identify
expression changes (normal versus tumor tissue) by using Linear
Models for Microarray Data Analysis (LIMMA) or Significance Analysis
of Microarray (SAM) analysis [2]. Probes with a false discovery rate
(FDR) of 0% were considered statistically significant. As an example
shownhere, we removedprobes near background or at low levels of de-
tection, including probes that fell within the 20th and 100th percentiles
that were present in at least 6 of the 9 samples per tissue type. SAM
) RMA normalized data distribution via box-whiskers plot with the upper and lower 10th
plots of thefirst four principal components (PC). Four eigenvectorswere calculated for PCA
themicroarray samples identified both by number and paired samples (lines). Confidence
ical clustering using Pearson's Dissimilarity matrix with average linkage. The scale for the
classification is colored red and blue representing normal and tumor tissue classification,
he expected scores. The solid line represents observed = expected, whereas the dashed
ially expressed are indicated by red and green open circles, indicating higher and lower
ovaries. The number of differentially expressed genes, predicted false positives, and the
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identified 3646 probes that were differentially expressed at a false dis-
covery rate of 0.0% (Fig. 2E).

3. Discussion

We utilized a normal versus tumorigenic tissue paired microarray
analysis of gene expression fromnine animals (Table 1) to produce a ro-
bust genetic signature ofOCCC caused byARID1A andPIK3CAmutations
in a newly reportedmousemodel that genetically resembles the human
disease [2]. Ourmousemodel and the transcriptional data set described
herein represent a novel resource to study one of themost deadly forms
of OCCC [1].We described the sample quality (Fig. 1), sample processing
(Fig. 2A), and technical details to reproduce the analysis of differential
gene expression from the matched tissues. Additional analyses and
comparisons to other cancer datasets can be used in future investiga-
tions examining molecular changes that promote OCCC tumorigenesis.
The distance between tumor and healthy tissue both by PCA (Fig. 2B,
C) andHC (Fig. 2D) revealed a strong differentiating transcriptional pro-
file of this cancer model (Fig. 2E) that when combined with a human
dataset (NCBI GEO: GSE6008) [6] implicated interleukin 6 signaling in
OCCC pathophysiology [2]. Chandler et al. [2] and this Data in Brief
demonstrate the importance of identifying and functionally analyzing
tumor mutations and the pathways that are disrupted to uncovering
new targets for cancer therapies.
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