1,464 research outputs found

    Size and Causes of the Occupational Gender Wage-gap in the Netherlands

    Get PDF
    Research from the United States consistently shows that female-dominated occupations generally yield lower wages than male-dominated occupations. Using detailed occupational data, this study analyses the size andcauses of this occupational genderwage-gap in the Dutch labourmarket using multi-levelmodelling techniques.The analyses showthat bothmen andwomen earn lowerwages if they are employed in female-dominated occupations. This especially indicates the signiÂącance of gender inWestern labour markets, since overall levels of wage inequality are relatively small in the Netherlands compared to, for example, the United Kingdom and the United States. DiÂĄerences in required responsibility are particularly important in accounting for this occupational wage-gap. Nonetheless, we find large wage penalties for working in a female-dominated instead of a maledominated occupation for occupations that require high levels of education, skills, and responsibility.

    Evolution of a beam dynamics model for the transport lines in a proton therapy facility

    Full text link
    Despite the fact that the first-order beam dynamics models allow an approximated evaluation of the beam properties, their contribution is essential during the conceptual design of an accelerator or beamline. However, during the commissioning some of their limitations appear in the comparison against measurements. The extension of the linear model to higher order effects is, therefore, demanded. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the performance of the facility, a more precise model was required and has been developed with the multi-particle open source beam dynamics code called OPAL (Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g. degrader, collimators, scattering foils and air gaps) on the beam emittance and energy spread can be analysed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the OPAL model has been confirmed by numerous measurements.Comment: 17 pages, 19 figure

    Enhanced dielectronic recombination of lithium-like Ti19+ ions in external ExB fields

    Full text link
    Dielectronic recombination(DR) of lithium-like Ti19+(1s2 2s) ions via 2s->2p core excitations has been measured at the Heidelberg heavy ion storage ring TSR. We find that not only external electric fields (0 <= Ey <= 280 V/cm) but also crossed magnetic fields (30 mT <= Bz <= 80 mT) influence the DR via high-n (2p_j nl)-Rydberg resonances. This result confirms our previous finding for isoelectronic Cl14+ ions [Bartsch T et al, PRL 82, 3779 (1999)] that experimentally established the sensitivity of DR to ExB fields. In the present investigation the larger 2p_{1/2}-2p_{3/2} fine structure splitting of Ti19+ allowed us to study separately the influence of external fields via the two series of Rydberg DR resonances attached to the 2s -> 2p_{1/2} and 2s -> 2p_{3/2} excitations of the Li-like core, extracting initial slopes and saturation fields of the enhancement. We find that for Ey > 80 V/cm the field induced enhancement is about 1.8 times stronger for the 2p_{3/2} series than for the 2p_{1/2} series.Comment: 10 pages, 3 figures, to be published in Journal of Physics B, see also http://www.strz.uni-giessen.de/~k

    Conformal phased array with beam forming for airborne satellite communication

    Get PDF
    For enhanced communication on board of aircraft novel antenna systems with broadband satellite-based capabilities are required. The installation of such systems on board of aircraft requires the development of a very low-profile aircraft antenna, which can point to satellites anywhere in the upper hemisphere. To this end, phased array antennas which are conformal to the aircraft fuselage are attractive. In this paper two key aspects of conformal phased array antenna arrays are addressed: the development of a broadband Ku-band antenna and the beam synthesis for conformal array antennas. The antenna elements of the conformal array are stacked patch antennas with dual linear polarization which have sufficient bandwidth. For beam forming synthesis a method based on a truncated Singular Value Decomposition is proposed

    Optimizing propagating spin wave spectroscopy

    Get PDF
    The frequency difference between two oppositely propagating spin waves can be used to probe several interesting magnetic properties, such as the Dzyaloshinkii-Moriya interaction (DMI). Propagating spin wave spectroscopy is a technique that is very sensitive to this frequency difference. Here we show several elements that are important to optimize devices for such a measurement. We demonstrate that for wide magnetic strips there is a need for de-embedding. Additionally, for these wide strips there is a large parasitic antenna-antenna coupling that obfuscates any spin wave transmission signal, which is remedied by moving to smaller strips. The conventional antenna design excites spin waves with two different wave vectors. As the magnetic layers become thinner, the resulting resonances move closer together and become very difficult to disentangle. In the last part we therefore propose and verify a new antenna design that excites spin waves with only one wave vector. We suggest to use this antenna design to measure the DMI in thin magnetic layers.Comment: 12 pages, 4 figure

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k

    Large interfacial spin-orbit torques in layered antiferromagnetic insulator NiPS3/ferromagnet bilayers

    Get PDF
    Finding efficient ways of manipulating magnetic bits is one of the core goals in spintronic research. Electrically-generated spin-orbit torques (SOTs) are good candidates for this and the search for materials capable of generating highly-efficient SOTs has gained a lot of traction in the recent years. While antiferromagnet/ferromagnet bilayer structures have been employed extensively for passive applications, e.g. by using exchange bias fields, their active properties are not yet widely employed. Here we show the presence of large interfacial SOTs in bilayer of a ferromagnet and the two-dimensional layered antiferromagnetic insulator NiPS3_3. We observe a large in-plane damping-like interfacial torque, showing a torque conductivity of σDL≈1×105(ℏ2e)/(Ωm)\sigma_\mathrm{DL} \approx 1 \times 10^{5} \mathrm{(\frac{\hbar}{2e}) /(\Omega m)} even at room temperature, comparable to the best devices reported in the literature for standard heavy-metal-based and topological insulators-based devices. Additionally, our devices also show an out-of-plane field-like torque arising from the NiPS3_3/ferromagnet interface, further indicating the presence of an interfacial spin-orbit coupling in our structures. Temperature-dependent measurements reveal an increase of the SOTs with a decreasing temperature below the N\'eel temperature of NiPS3_3 (TN≈170KT_N \approx 170 \mathrm{K}), pointing to a possible effect of the magnetic ordering on our measured SOTs. Our findings show the potential of antiferromagnetic insulators and two-dimensional materials for future spintronic applications.Comment: 19 pages, 3 figures, 1 table. Changed units of the torque normalized by the electric field from ÎŒm T/V\mathrm{\mu m \, T/V} to $\mathrm{nm \, T/V}
    • 

    corecore