1,121 research outputs found

    Multi-variable Polynomial Solutions to Pell's Equation and Fundamental Units in Real Quadratic Fields

    Full text link
    For each positive integer nn it is shown how to construct a finite collection of multivariable polynomials {Fi:=Fi(t,X1,...,X⌊n+12βŒ‹)}\{F_{i}:=F_{i}(t,X_{1},..., X_{\lfloor \frac{n+1}{2} \rfloor})\} such that each positive integer whose squareroot has a continued fraction expansion with period n+1n+1 lies in the range of exactly one of these polynomials. Moreover, each of these polynomials satisfy a polynomial Pell's equation Ci2βˆ’FiHi2=(βˆ’1)nβˆ’1C_{i}^{2} -F_{i}H_{i}^{2} = (-1)^{n-1} (where CiC_{i} and HiH_{i} are polynomials in the variables t,X1,...,X⌊n+12βŒ‹t,X_{1},..., X_{\lfloor \frac{n+1}{2} \rfloor}) and the fundamental solution can be written down. Likewise, if all the XiX_{i}'s and tt are non-negative then the continued fraction expansion of Fi\sqrt{F_{i}} can be written down. Furthermore, the congruence class modulo 4 of FiF_{i} depends in a simple way on the variables t,X1,...,X⌊n+12βŒ‹t,X_{1},..., X_{\lfloor \frac{n+1}{2} \rfloor} so that the fundamental unit can be written down for a large class of real quadratic fields. Along the way a complete solution is given to the problem of determining for which symmetric strings of positive integers a1,...,ana_{1},..., a_{n} do there exist positive integers DD and a0a_{0} such that D=[a0;a1,>...,an,2a0Λ‰]\sqrt{D} = [ a_{0};\bar{a_{1}, >..., a_{n},2a_{0}}].Comment: 13 page

    The irrationality of a number theoretical series

    Full text link
    Denote by Οƒk(n)\sigma_k(n) the sum of the kk-th powers of the divisors of nn, and let Sk=βˆ‘nβ‰₯1Οƒk(n)n!S_k=\sum_{n\geq 1}\frac{\sigma_k(n)}{n!}. We prove that Schinzel's conjecture H implies that SkS_k is irrational, and give an unconditional proof for the case k=3k=3
    • …
    corecore