10 research outputs found

    Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Get PDF
    Titanium dioxide (TiO2), also known as titanium (IV) oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP) by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity) and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ < 100 nm) using several parameters such as cyto- and genotoxicity, DNA-adduct formation and generation of free radicals following its uptake by human lung cells in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ < 100 nm) were used. The results of this study showed that both types of NP were located in the cytosol near the nucleus. No particles were found inside the nucleus, in mitochondria or ribosomes. Human lung fibroblasts (IMR-90) were more sensitive regarding cyto- and genotoxic effects caused by the NP than human bronchial epithelial cells (BEAS-2B). In contrast to hematite NP, TiO2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS) was measured acellularly (without any photocatalytic activity) as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG) was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage) and required reducing conditions for radical formation

    NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Get PDF
    In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE) cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione

    Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms

    Get PDF
    Inhalation of (nano)particles may lead to pulmonary inflammation. However, the precise mechanisms of particle uptake and generation of inflammatory mediators by alveolar macrophages (AM) are still poorly understood. The aim of this study was to investigate the interactions between particles and AM and their associated pro-inflammatory effects in relation to particle size and physico-chemical properties

    Particulates and oxidative stress

    No full text

    Acute, sub-chronic and chronic exposures to TiO and Ag nanoparticles differentially affects neuronal function in vitro.

    Get PDF
    In vivo toxicokinetic studies provide evidence for the translocation and accumulation of nanoparticles (NP) in the brain, thereby causing concern for adverse health effects, particularly for effects following chronic exposure. To date, only few studies investigated the effects of NP exposure on neuronal function in vitro, primarily focusing on short-term effects. The aim of this study was therefore to investigate the effects of two common types of NP, titanium dioxide NP (TiO2NP) and silver NP (AgNP), on neuronal function following acute (0.5h), sub-chronic (24h and 48h) and chronic (14 days) exposure in vitro. Effects of NP exposure on intracellular calcium homeostasis, spontaneous neuronal (network) activity and neuronal network morphology were investigated in rat primary cortical cells using respectively, single-cell microscopy calcium imaging, micro-electrode array (MEA) recordings and immunohistochemistry. Our data demonstrate that high doses of AgNP (≥ 30µg/mL) decrease calcium influx after 24h exposure, although neuronal activity is not affected following acute and sub-chronic exposure. However, chronic exposure to non-cytotoxic doses of AgNP (1-10µg/mL) potently decreases spontaneous neuronal (network) activity, without affecting network morphology and viability. Exposure to higher doses (≥ 30µg/mL) affects network morphology and is also associated with cytotoxicity. In contrast, acute and sub-chronic exposure to TiO2NP is without effects, whereas chronic exposure only modestly reduces neuronal function without affecting morphology. Our combined findings indicate that TiO2NP exposure is of limited hazard for neuronal function whereas AgNP, in particularly during chronic exposure, has profound effects on neuronal (network) function and morphology
    corecore