14 research outputs found

    Assessment of PI3K/mTOR/AKT Pathway Elements to Serve as Biomarkers and Therapeutic Targets in Penile Cancer

    Get PDF
    The PI3K/mTOR/AKT pathway might represent an intriguing option for treatment of penile cancer (PeCa). We aimed to assess whether members of this pathway might serve as biomarkers and targets for systemic therapy. Tissue of primary cancer from treatment-naïve PeCa patients was used for tissue microarray analysis. Immunohistochemical staining was performed with antibodies against AKT, pAKT, mTOR, pmTOR, pS6, pPRAS, p4EBP1, S6K1 and pp70S6K. Protein expression was correlated with clinicopathological characteristics as well as overall survival (OS), disease-specific survival (DSS), recurrence-free survival (RFS) and metastasis-free survival (MFS). AKT inhibition was tested in two primarily established, treatment-naïve PeCa cell lines by treatment with capivasertib and analysis of cell viability and chemotaxis. A total of 76 patients surgically treated for invasive PeCa were included. Higher expression of AKT was significantly more prevalent in high-grade tumors and predictive of DSS and OS in the Kaplan–Meier analysis, and an independent predictor of worse OS and DSS in the multivariate regression analysis. Treatment with pan-AKT inhibitor capivasertib in PeCa cell lines induced a significant downregulation of both total AKT and pAKT as well as decreased cell viability and chemotaxis. Selected protein candidates of the mTOR/AKT signaling pathway demonstrate association with histological and survival parameters of PeCa patients, whereas AKT appears to be the most promising one

    Value of c-MET and Associated Signaling Elements for Predicting Outcomes and Targeted Therapy in Penile Cancer

    Get PDF
    Whereas the lack of biomarkers in penile cancer (PeCa) impedes the development of efficacious treatment protocols, preliminary evidence suggests that c-MET and associated signaling elements may be dysregulated in this disorder. In the following study, we investigated whether c-MET and associated key molecular elements may have prognostic and therapeutic utility in PeCa. Formalin-fixed, paraffin-embedded tumor tissue from therapy-naïve patients with invasive PeCa was used for tissue microarray (TMA) analysis. Immunohistochemical staining was performed to determine the expression of the proteins c-MET, PPARg, β-catenin, snail, survivin, and n-MYC. In total, 94 PeCa patients with available tumor tissue were included. The median age was 64.9 years. High-grade tumors were present in 23.4%, and high-risk HPV was detected in 25.5%. The median follow-up was 32.5 months. High expression of snail was associated with HPV-positive tumors. Expression of β-catenin was inversely associated with grading. In both univariate COX regression analysis and the log-rank test, an increased expression of PPARg and c-MET was predictive of inferior disease-specific survival (DSS). Moreover, in multivariate analysis, a higher expression of c-MET was independently associated with worse DSS. Blocking c-MET with cabozantinib and tivantinib induced a significant decrease in viability in the primary PeCa cell line UKF-PeC3 isolated from the tumor tissue as well as in cisplatin- and osimertinib-resistant sublines. Strikingly, a higher sensitivity to tivantinib could be detected in the latter, pointing to the promising option of utilizing this agent in the second-line treatment setting

    Evolutionäre Veränderungen in der Nutzung redox-aktiver Aminosäuren und ihre Ursachen

    No full text
    Gewebe, Zellen und speziell Zellkompartimente unterscheiden sich in ihrer Sauerstoffkonzentration, Stoffwechselrate und in der Konzentration an gebildeten reaktiven Sauerstoffspezies. Um eine mögliche Änderung in der Aminosäurennutzung durch den Einfluss von Sauerstoff und seinen reaktiven Spezies untersuchen zu können wurden, Bereiche bzw. Kompartimente der menschlichen Zelle definiert, die einen Referenzrahmen bildeten und bekannt dafür sind, einen relativ hohen Grad an reaktiven Sauerstoffspezies aufzuweisen. Aus dem Vergleich wurde deutlich, dass vor allem die beiden redox-aktiven und schwefeltragenden Aminosäuren Cystein und Methionin durch eine besondere Verteilung und Nutzung charakterisiert sind. Cystein ist hierbei diejenige Aminosäure mit den deutlichsten Änderungen in den fünf untersuchten Modellen der oxidativen Belastung. In all diesen Modellen war die Nutzung von Cystein deutlich reduziert, wohingegen Methionin in Proteinen des Mitochondriums und der Elektronentransportkette angereichert war. Dieser auf den ersten Blick paradoxe Unterschied zwischen Cystein und Methionin wurde näher untersucht, indem die differenzierte Methioninnutzung in verschiedenen Zellkompartimenten von Homo sapiens charakterisiert wurde.rnDie sehr leicht zu oxidierende Aminosäure Methionin zeigt ein ungewöhnliches Verteilungsmuster in ihrer Nutzungshäufigkeit. Entgegen mancher Erwartung wird Methionin in zellulären Bereichen hoher oxidativer Belastung und starker Radikalproduktion intensiv verwendet. Dieses Verteilungsmuster findet man sowohl im intrazellulären Vergleich, als auch im Vergleich verschiedener Spezies untereinander, was daraufhin deutet, dass es einen lokalen Bedarf an redox-aktiven Aminosäuren gibt, der einen sehr starken Effekt auf die Nutzungshäufigkeit von Methionin ausübt. Eine hohe Stoffwechselrate, die im Allgemeinen mit einer erhöhten Produktion von Oxidantien assoziiert wird, scheint ein maßgeblicher Faktor der Akkumulation von Methionin in Proteinen der Atmungskette zu sein. Die Notwendigkeit, oxidiertes Antioxidans wieder zu reduzieren, findet auch bei Methionin Anwendung, denn zu Methioninsulfoxid oxidiertes Methionin wird durch die Methioninsulfoxidreduktase wieder zu Methionin reduziert. Daher kann die spezifische Akkumulation von Methionin in Proteinen, die verstärkt reaktiven Sauerstoffspezies ausgesetzt sind, als eine systematische Strategie angesehen werden, um andere labile Strukturen vor ungewollter Oxidation zu schützen. rnDa Cystein in allen untersuchten Modellen der oxidativen Belastung und im Besonderen in Membranproteinen der inneren Mitochondrienmembran lebensspannenabhängig depletiert war, wurde dieses Merkmal näher untersucht. Deshalb wurde die Hypothese getestet, ob ein besonderer Redox-Mechanismus der Thiolfunktion für diese selektive Depletion einer im Allgemeinen als harmlos oder antioxidativ geltenden Aminosäure verantwortlich ist. Um den Effekt von Cysteinresten in Membranen nachzustellen, wurden primäre humane Lungenfibroblasten (IMR90) mit diversen Modellsubstanzen behandelt. Geringe Konzentrationen der lipophilen Substanz Dodecanthiol verursachten eine signifikante Toxizität in IMR90-Zellen, die von einer schnellen Zunahme an polyubiquitinierten Proteinen und anderen Indikatoren des proteotoxischen Stresses, wie Sequestosom 1 (P62), HSP70 und HSP90 begleitet wurde. Dieser Effekt konnte spezifisch der Chemie der Thiolfunktion in Membranen zugeordnet werden, da Dodecanol (DOH), Dodecylmethylsulfid (DMS), Butanthiol oder wasserlösliche Thiole weder eine cytotoxische Wirkung noch eine Polyubiquitinierung von Proteinen verursachten. Die Ergebnisse stimmen mit der Hypothese überein, dass Thiole innerhalb von biologischen Membranen als radikalische Kettentransferagentien wirken. Diese Eigenschaft wird in der Polymerchemie durch Nutzung von lipophilen Thiolen in hydrophoben Milieus technisch für die Produktion von Polymeren benutzt. Da die Thiylradikal-spezifische Reaktion von cis-Fettsäuren zu trans-Fettsäuren in 12SH behandelten Zellen verstärkt ablief, kann gefolgert werden, dass 12SH zellulär radikalisiert wurde. In lebenden Organismen kann demnach die Oxidation von Cystein die Schädigung von Membranen beschleunigen und damit Einfallstore für die laterale Radikalisierung von integralen Membranproteinen schaffen, welche möglicherweise der Langlebigkeit abträglich ist, zumindest, wenn sie in der inneren Mitochondrienmembran auftritt.Nearly every cell in higher eukaryotes is influenced by oxygen. Oxygen is omnipresent in the environment of almost every higher animal, and it is used to metabolize substrates to gain the majority of the cell´s ATP. On the other side, oxygen is highly reactive when reactive oxygen species are formed as byproducts of the normal energy metabolism. The ensuing oxidative stress can lead to oxidative modifications of amino acid side chains in proteins, which are considered to represent structural damage. Since the chemistry of the amino acids varies in many ways, it was of interest to analyze the differentiated amino acid usage in various models of oxidative stress including organelles and cellular substructures as well physiological factors such as longevity and oxygen consumption. Analyzing the amino acid usage of mitochondrial proteins in 20 different animals, it was found that the two sulfur-containing and redox-active amino acids were employed in an oppositional way. While methionine accumulated in proteins of the respiratory chain, cysteine was depleted in exactly these peptides. rnRegarding the methionine effect, studies on its distribution in 19806 proteins from Homo sapiens revealed a clear tendency of methionine to accumulate in proteins located to the vicinity to high oxidative pressure. The accumulation of methionine in proteins of the electron transport chain and the possibility of methionine sulfoxide reductase to reverse the oxidation of methionine indicates that the purpose of methionine accumulation in proteins in an oxidative environment is to act as a sacrificial cathode. As a consequence, it is likely that an elevated methionine content can protect protein surfaces and the surrounding lipids from getting oxidized under oxidative stress conditions. If there is no or little oxidative stress, for example in anaerobic animals like parasites or anaerobic helminths, no methionine accumulation could be seen.rnRegarding cysteine, to understand the mechanism of the observed cysteine depletion in proteins of the respiratory chain and in other oxidative sites, a series of biochemical experiments were performed. A new model substance, namely dodecylthiol (12SH), was used to reverse the effect of the evolutionary cystein and thus thiol depletion in membrane proteins. Primary human lung fibroblasts (IMR90) were treated with different concentrations of 12SH and different control substances. At low concentrations (10-100 µM), 12SH caused significant toxicity to IMR90 cells, which was accompanied by a rapid increase in the levels of poly-ubiquitinated proteins and other markers of proteotoxic stress like sequestosome 1 (p62), and a delayed upregulation of HSP70 and HSP90 was noted. These effects were specific to the intramembrane accumulation of a thiol group, because dodecyl alcohol (DOH), methylated dodecyl thiol (DMS), butyl thiol (4SH), or other aqueous thiols neither induced cytotoxicity, nor elevated the levels of poly-ubiquitinated proteins. The addition of tocopherol could partially reverse the observed cytotoxicity of 12SH, which could not be achieved by the exogenous addition of catalase or SOD. To study the impact of thiols on lipid peroxidation, isolated brain membranes were treated with 12SH, which alone had no effect, but in combination with low concentrations of radical initiators massively amplified the lipid peroxidation process. To summarize these findings, thiols in biological membranes (and hence cysteine in membrane proteins) seem to possess a highly efficient free radical chain-transfer activity, as known from polymer chemistry. For this reason, cysteine residues might accelerate lipid bilayer decomposition, putatively followed by the lateral radicalization of integral membrane proteins, which might result in selective damage to high-protein, high-oxidant membranes, such as those of the inner mitochondrial membrane

    Clinicopathological Significance of Syndecan-1 in Cholangiocarcinoma: A Study Based on Immunohistochemistry and Public Sequencing Data

    No full text
    Background: Syndecan-1 (CD138; SDC1) is a heparan sulfate proteoglycan that has been attributed a key role in cancer progression in ductal adenocarcinoma of the pancreas. We therefore aimed to investigate the role of syndecan-1 in cholangiocarcinoma. Methods: We analyzed syndecan-1 expression in a large, clinicopathologically well-characterized collective of 154 intrahepatic cholangiocarcinoma, 221 extrahepatic cholangiocarcinomas, and 95 gallbladder carcinomas as well as respective normal tissues and precursor lesions by immunohistochemistry with digital image analysis and correlated with recurrence-free survival and prognostic markers. Furthermore, we conducted an analysis of cancer genes in the cholangiocarcinoma cohort of The Cancer Genome Atlas (TCGA). Results: During cholangiocarcinogenesis, syndecan-1-expression decreased when compared to normal bile ducts and biliary intraepithelial neoplasia; however, syndecan-1 levels were found to be elevated in lymph node metastases. In the TCGA cohort, high mRNA SDC1 levels were associated with poor prognosis in intrahepatic cholangiocarcinoma. However, in our large cohort, the immunohistochemical syndecan-1 expression did not significantly correlate with recurrence-free survival. Conclusions: Syndecan-1 was found to be downregulated during cholangiocarcinogenesis, yet we could not show significant effects on prognosis on protein level. Further analyses are needed to further depict its specific role

    Lipid Droplet-Associated Proteins Perilipin 1 and 2: Molecular Markers of Steatosis and Microvesicular Steatotic Foci in Chronic Hepatitis C

    No full text
    Chronic infection with hepatitis C (HCV) is a major risk factor in the development of cirrhosis and hepatocellular carcinoma. Lipid metabolism plays a major role in the replication and deposition of HCV at lipid droplets (LDs). We have demonstrated the importance of LD-associated proteins of the perilipin family in steatotic liver diseases. Using a large collection of 231 human liver biopsies with HCV, perilipins 1 and 2 have been localized to LDs of hepatocytes that correlate with the degree of steatosis and specific HCV genotypes, but not significantly with the HCV viral load. Perilipin 1- and 2-positive microvesicular steatotic foci were observed in 36% of HCV liver biopsies, and also in chronic hepatitis B, autoimmune hepatitis and mildly steatotic or normal livers, but less or none were observed in normal livers of younger patients. Microvesicular steatotic foci did not frequently overlap with glycogenotic/clear cell foci as determined by PAS stain in serial sections. Steatotic foci were detected in all liver zones with slight architectural disarrays, as demonstrated by immunohistochemical glutamine synthetase staining of zone three, but without elevated Ki67-proliferation rates. In conclusion, microvesicular steatotic foci are frequently found in chronic viral hepatitis, but the clinical significance of these foci is so far not clear

    Key Enzymes in Pyrimidine Synthesis, CAD and CPS1, Predict Prognosis in Hepatocellular Carcinoma

    No full text
    Patients with hepatocellular carcinoma (HCC) have a highly variable clinical course. Therefore, there is an urgent need to identify new prognostic markers to determine prognosis and select specific therapies. Recently, it has been demonstrated that dysregulation of the urea cycle (UC) is a common phenomenon in multiple types of cancer. Upon UC dysregulation, nitrogen is diverted toward the multifunctional enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD), and increases pyrimidine synthesis. In this study, we investigated the role of CAD and carbamoyl-phosphate synthetase 1 (CPS1), a rate-limiting enzyme of the UC highly expressed in hepatocytes, in HCC. We created a tissue microarray to analyze expression of both enzymes by immunohistochemistry in a large and well-characterized overall cohort of 871 HCCs of 561 patients that underwent surgery. CAD was induced in recurrent HCCs, and high expression predicted shorter overall survival. CPS1 was downregulated in HCC and further reduced in recurrent tumors and distant metastases. Additionally, low CPS1 was associated with short overall survival. A combined score of both enzymes was an independent prognostic marker in a multivariate Cox regression model (HR = 1.37, 95% confidence interval 1.06–1.75, p = 0.014). Inhibition of pyrimidine synthesis may represent a novel therapeutic strategy for HCC

    An investigation of the diagnostic, predictive, and prognostic impacts of three colonic biopsy grading systems for acute graft versus host disease

    No full text
    Acute graft versus host disease (aGvHD) is an important, life-threatening complication after allogeneic hematopoietic stem cell transplantation (alloHSCT). To investigate the value of multiple simultaneous colon biopsies in improving diagnostic accuracy in patients with aGvHD, we retrospectively analyzed 157 patients after alloHSCT. The biopsies were evaluated individually using three established histological grading systems (Lerner, Sale, and Melson). The maximum, minimum, median, and mean histological aGvHD grades were calculated for each patient, and the results were correlated with the Glucksberg grade of clinical manifestation of GvHD, steroid therapy status, and outcome. We found that multiple colon biopsies enhanced diagnostic sensitivity. Moreover, higher histological grades correlated with steroid therapy initiation and refractoriness; the latter particularly occurred when advanced damage was present in all samples and healthy colon mucosa was reduced or absent. On multivariate analysis, the minimal Lerner and Glucksberg grades for intestinal aGvHD were significantly associated with steroid treatment failure. Ninety-nine patients died. The median survival was 285 days after the biopsies were taken. Fifteen patients died from relapse of their underling disorder and 84 from other causes, mostly infection (53 patients) and GvHD (14 patients). Multivariate analysis revealed a significant association between none-relapse mortality and the mean Lerner grade, minimum Melson grade, Glucksberg organ stage, and platelet counts. Thus, we found the Lerner system to be superior to the other grading methods in most instances and histologic evaluation of multiple simultaneously obtained biopsies from the colon to result in a higher diagnostic yield, which helps plan systemic steroid treatment while predicting treatment response and outcome

    Reduced Lipid Peroxidation Predicts Unfavorable Prognosis in Hepatocellular Carcinoma, but Not Intrahepatic Cholangiocarcinoma

    No full text
    Primary liver cancer, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a significant contributor to cancer-related mortality worldwide. Oxidative stress and lipid peroxidation play a key role in chronic liver diseases and have been shown to be pivotal for tumor initiation and progression. 4-hydroxy-nonenal (4-HNE), one of the major mediators of oxidative stress and a well-established biomarker for lipid peroxidation, can act as a signal transducer, inducing inflammation and exerting carcinogenic effects. However, the role of 4-HNE in primary liver cancer remains poorly explored. In this study, we investigated 4-HNE levels in 797 liver carcinomas, including 561 HCC and 236 iCCA, by immunohistochemistry. We then correlated 4-HNE levels with comprehensive clinical data and survival outcomes. In HCC, lower expression levels of 4-HNE were associated with vascular invasion, a high tumor grade, a macrotrabecular-massive HCC subtype, and poor overall survival. Concerning iCCA, large duct iCCA showed significantly higher 4-HNE levels when compared to small duct iCCA. Yet, in iCCA, 4-HNE levels did not correlate with known prognostic parameters or survival outcomes. To conclude, in HCC but not in iCCA, low amounts of 4-HNE predict unfavorable survival outcomes and are associated with aggressive tumor behavior. These findings provide insights into the role of 4-HNE in liver cancer progression and may enable novel therapeutic strategies

    Constitutive Occurrence of E:N-cadherin Heterodimers in Adherens Junctions of Hepatocytes and Derived Tumors

    No full text
    Cell–cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction’s transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial–mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins α- and β-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT
    corecore