63 research outputs found

    A nonlinear random walk approach to concentration-dependent contaminant transport in porous media

    Get PDF
    We propose a nonlinear random walk model to describe the dynamics of dense contaminant plumes in porous media. A coupling between concentration and velocity fields is found, so that transport displays non-Fickian features. The qualitative behavior of the pollutant spatial profiles and moments is explored with the help of Monte Carlo simulation, within a Continuous Time Random Walk approach. Model outcomes are then compared with experimental measurements of variable-density contaminant transport in homogeneous and saturated vertical columns.Comment: 8 pages, 9 figure

    Dispersion enhancement and damping by buoyancy driven flows in 2D networks of capillaries

    Full text link
    The influence of a small relative density difference on the displacement of two miscible liquids is studied experimentally in transparent 2D networks of micro channels. Both stable displacements in which the denser fluid enters at the bottom of the cell and displaces the lighter one and unstable displacements in which the lighter fluid is injected at the bottom and displaces the denser one are realized. Except at the lowest mean flow velocity U, the average C(x,t)C(x,t) of the relative concentration satisfies a convection-dispersion equation. The dispersion coefficient is studied as function of the relative magnitude of fluid velocity and of the velocity of buoyancy driven fluid motion. A model is suggested and its applicability to previous results obtained in 3D media is discussed

    A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada

    Get PDF
    Scotty Creek, Northwest Territories (NWT), Canada, has been the focus of hydrological research for nearly three decades. Over this period, field and modelling studies have generated new insights into the thermal and physical mechanisms governing the flux and storage of water in the wetland-dominated regions of discontinuous permafrost that characterises much of the Canadian and circumpolar subarctic. Research at Scotty Creek has coincided with a period of unprecedented climate warming, permafrost thaw, and resulting land cover transformations including the expansion of wetland areas and loss of forests. This paper (1) synthesises field and modelling studies at Scotty Creek, (2) highlights the key insights of these studies on the major water flux and storage processes operating within and between the major land cover types, and (3) provides insights into the rate and pattern of the permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the study region.</p

    G.: Generation of Aquifer Heterogeneity Maps using Two Dimensional Spectral Texture Segmentation Techniques

    No full text
    In this paper we present two new texture segmentation algorithms based on local spectrum analysis with the two dimensional S-Transform. The effectiveness of these algorithms is demonstrated both on simple synthetic images, and complicated, real images of glacial sediment deposits. The S-Transform method is robust and is insensitive to changes in light intensity, and moisture variations. The effectiveness of our methods are measured by correlating measured relative grain sizes in the images with actual grain size measurements taken from the sedimentary outcrops. Key Words: image processing texture segmentation aquifer hetergeneity solute transport S-Transfor

    Coupled cellular automata for frozen soil processes

    No full text
    Heat and water movement in variably saturated freezing soils is a strongly coupled phenomenon. The coupling is a result of the effects of sub-zero temperature on soil water potential, heat carried by water moving under pressure gradients, and dependency of soil thermal and hydraulic properties on soil water content. This study presents a one-dimensional cellular automata (direct solving) model to simulate coupled heat and water transport with phase change in variably saturated soils. The model is based on first-order mass and energy conservation principles. The water and energy fluxes are calculated using first-order empirical forms of Buckingham–Darcy's law and Fourier's heat law respectively. The liquid–ice phase change is handled by integrating along an experimentally determined soil freezing curve (unfrozen water content and temperature relationship) obviating the use of the apparent heat capacity term. This approach highlights a further subtle form of coupling in which heat carried by water perturbs the water content–temperature equilibrium and exchange energy flux is used to maintain the equilibrium rather than affect the temperature change. The model is successfully tested against analytical and experimental solutions. Setting up a highly non-linear coupled soil physics problem with a physically based approach provides intuitive insights into an otherwise complex phenomenon

    Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: laboratory investigations

    No full text
    There are not many studies that report water movement in freezing peat. Soil column studies under controlled laboratory settings can help isolate and understand the effects of different factors controlling freezing of the active layer in organic covered permafrost terrain. In this study, four peat Mesocosms were subjected to temperature gradients by bringing the Mesocosm tops in contact with sub-zero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost). Soil water movement towards the freezing front (from warmer to colder regions) was inferred from soil freezing curves, liquid water content time series and from the total water content of frozen core samples collected at the end of freezing cycle. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period appeared to have moved upwards during freezing. Diffusion under moisture gradients and effects of temperature on soil matric potential, at least in the initial period, appear to drive such movement as seen from analysis of freezing curves. Freezing front (separation front between soil zones containing and free of ice) propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost
    corecore